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Mn atoms, dMn−Mn in Å, and distance between Mn and C atoms, dMn−C
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Chapter 1

Introduction

I have never met a man so ignorant that I couldn’t learn something from him.

-Galileo Galilei

Semiconductors, once considered to be dirty systems, today lie at the foundation of

modern information technology. Presently the processing and communication of informa-

tion is carried out by utilizing the charge of electrons in semiconductors while the mass

storage of information is carried out by utilizing spin of electrons in ferromagnetic mate-

rials. Extensive research effort is on to combine these two in a single unit so that both

charge and spin of electrons can be utilized simultaneously. This has lead to the birth

of new branch of semiconductor physics known as “spintronics”. With the realization of

spintronic based devices the processing performance is expected to enhance largely. Fur-

thermore, it may be possible to control spin state of electrons by injecting spin polarized

current into the spintronic material which will be helpful in quantum computation.

The prerequisite for a spintronic material is that it has to be a ferromagnetic semicon-

ductor. The conventional semiconductors like Si and GaAs are nonmagnetic semiconduc-

tors. There are some natural ferromagnetic semiconductors like europium chalcogenides

and some semiconducting spinels. However, their crystal structures are incompatible with

the crystal structures of Si or GaAs. Moreover, the crystal growth of these compounds

1
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is extremely difficult. The next choice to achieve a suitable ferromagnetic semiconductor

is to dope a semiconductor by some suitable magnetic element. Such a semiconductor is

commonly known as diluted magnetic semiconductor (DMS). The theoretical prediction

of the occurrence of ferromagnetism in wide band gap semiconductors like GaAs and ZnO

prompted extensive research in this direction. The radiation insensitivity, low noise capa-

bility, high temperature and high frequency operation capability of these wide band gap

materials offer extra advantages.

Ferromagnetism has been found in many materials like Mn doped GaAs, InAs and

InSb. However, the transition temperature in these systems is well below the room tem-

perature. This is the main hurdle for practical realization of these materials. While the

initial DMS perspective research was focused to transition metal (TM) doped III-V semi-

conductors, recently II-VI semiconductor like ZnO has attracted much attention as it is

easier to synthesize ZnO single crystal. Moreover, ZnO is more abundant and is more

cost effective.

The aim of this thesis is to understand the structural, electronic and magnetic prop-

erties of wide band gap semiconductors employing the first principle density functional

theory based calculations. The understanding of these properties is important from basic

physical understanding viewpoint as well as for prospective application of such semicon-

ductors in functional devices. The present study covers two size regimes of the wide band

gap semiconductors: molecular clusters and bulk.

As clusters bridge the gap between molecules and the bulk material, their study is

important for understanding the evolution of properties of materials when one goes from

molecule to bulk. Clusters often exhibit novel properties. For example, the clusters of

non magnetic elements are found to exhibit magnetism and clusters of metallic elements

show the energy gap between the highest occupied molecular orbital (HOMO) and the

lowest unoccupied molecular orbital (LUMO). Likewise their growth pattern is different

from corresponding bulk. Moreover, these properties are found to vary remarkably with
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the size and composition of the clusters and hence a cluster of desirable property can be

synthesized by controlling these parameters. After the synthesis of fullerenes into fullerite

(fullerene assembled solid), clusters are thought to be potential candidates for making

cluster assembled solid. The synthesis of cluster assembled solid is expected to bring

revolution in device miniaturization.

We have attempted to study structural and electronic properties of undoped and doped

clusters of ZnO (Chapters 3 and 4). As the band gap engineering of ZnO is important

for the development of devices like UV-blue light emitting diodes, visible blind UV photo

detectors, quantum well structures and spintronic systems, we have paid particular at-

tention to band gap (HOMO-LUMO gap for clusters) property of undoped and doped

clusters of ZnO. In the regime of clusters the variation of size itself leads to variation in

HOMO-LUMO gap. We have also shown that the HOMO -LUMO gap of a particular

sized cluster can be tailored by doping with elements like Mg and Cd. The variation of

HOMO-LUMO gap in Mg/Cd doped ZnO clusters is found to follow the similar trend as

the variation of Mg/Cd doped bulk ZnO, and therefore, the theoretical results on clusters

can be helpful for qualitative understanding of band gap variation in bulk.

Chapter 5 deals with the magnetic properties of Cr doped ZnTe clusters. A (ZnTe)12

cluster doped with single Cr atom exhibits atomic like magnetic moment unlike in the

case of bulk where the moment of Cr atom gets reduced. The nature of magnetic coupling

between two Cr atoms is found to depend on local environment, however the most stable

structure exhibit ferromagnetic coupling. Moreover, Cr doping enhances the stability of

clusters. These properties favor Cr doped ZnTe cluster to be a promising material for

spintronic based devices.

The bulk systems studied are ZnMnO and MnO (Chapters 6 and 7). The occurrence

of ferromagnetism in these wide band gap semiconductors is crucial for their spintronic

applications. The experimental reports regarding the nature of magnetic coupling be-

tween Mn atoms in Mn doped ZnO are controversial. Some reports suggest occurrence
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of even room temperature ferromagnetism while others suggest the occurrence of antifer-

romagnetic coupling. The results based on first principles calculations, however, suggest

antiferromagnetic coupling to be the most stable state. We have shown that ferromagnetic

state can be stabilized by co-doping ZnMnO with few concentration of carbon atom. The

carbon substitution at O sites creates hole carriers into the system which lead to stabi-

lization of ferromagnetic state. We apply similar hole doping trick to tune ferromagnetic

coupling in an otherwise anti-ferromagnetic MnO. We have carried out substitutional

doping at O sites of MnO by 2p elements like carbon and nitrogen. Such doping provides

holes into the system which play role in stabilizing ferromagnetic ordering in MnO.

We should mention here that the idea of carrying out first-principle calculations is

not simply to reproduce experimental data. That would be a pointless exercise. The

idea would be to gain microscopic insight into why the data are as they are, why their

trends in behaviour behave as they do. The ultimate aim would be to predict the be-

haviour of systems where experiments have not yet been carried out. This would help the

experimentalist to both choosing material and designing experiments appropriately.



Chapter 2

Theoretical background for electronic structure

calculations

2.1 The electronic structure of solids as a many-body problem

We shall model a solid as a collection of M ion-cores consisting of the nuclei and the

tight-bound atomic like core electrons glued together with N valence electrons. The infor-

mation about the behaviour of such system is contained in the many-body wave function

ψ(r1, ....., rN ;R1, .....RM) which is a function of all the ionic and electronic coordinates

denoted by Rα and ri respectively. The first principles, or ab initio calculation involves

solution of the Schrödinger equation involving this wave-function :

Ĥψ(r1, ....., rN ;R1, .....RM) = E ψ(r1, ....., rN ;R1, .....RM) (2.1)

where Ĥ is the many body Hamiltonian operator and E is the total energy of the system.

The Hamiltonian operator describes the motion of all the ions and electrons in the system.

If the motion of ions and electrons are treated in non-relativistic manner then in atomic

units the Hamiltonian has the form:

Ĥ = −
M∑

α=1

1

2Mα

▽2
α −

N∑

i=1

1

2
▽2
i −

M∑

α=1

N∑

i=1

Zα
|ri − Rα|

+
N∑

i=1

N∑

j>i

1

|ri − rj|
+

M∑

α=1

M∑

β>α

ZαZβ
|Rα − Rβ|

(2.2)

5



Chapter 2. Theoretical background for electronic structure calculations 6

whereMα is the ratio of mass of an ion-core to the mass of an electron and Zα is the atomic

number of αth ion-core. The first term on the right of Eqn. (2.2) is the operator for kinetic

energy of ion-cores, the second term is the operator for kinetic energy of electrons, the

third term represents the Coulomb attraction between ion-cores and electrons, the fourth

term represents the Coulomb repulsion between electrons and the last term represents the

Coulomb repulsion between ion-cores.

2.2 Born-Oppenheimer Approximation

The third term on the right of Eqn. (2.2) couples the electronic coordinates with ion-core

coordinates and hence poses a hurdle in separating the full Hamiltonian in terms of the

ion-core and electronic Hamiltonians. This hurdle is overcome under Born-Oppenheimer

Approximation [1] which assumes ion-cores to be fixed with respect to motion of electrons.

The approximation is based on the fact that, in general, mass of an ion-core is much

heavier than that of an electron and hence it moves so slowly with respect to an electron

that it can be assumed to be stationary with respect to electronic motion. Within this

approximation, for electronic motion, the first term on the right of Eqn. (2.2) can be

neglected and the last term can be considered to be a constant which can be left while

solving the Schrödinger equation for electrons and can be added later. Thus we are left

with the electronic Hamiltonian:

Ĥelec = −
1

2

N∑

i

▽2
i +

N∑

i=1

N∑

j>i

1

|ri − rj|
−

M∑

α=1

N∑

i=1

Zα
|ri − Rα|

= T̂ + V̂ee + V̂ext (2.3)

The operators T̂ and V̂ee are the same for any system and hence they are universal

operators. The system dependent information is entirely given by V̂ext. The usual ap-

proach for calculating observables via the solution of the Schrödinger equation can be
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summarized by the sequence:

V̂ext =⇒ ψ(r1, r2, ......, rN )
〈ψ|Ô|ψ〉
=⇒ observables

i.e., one first specifies the system by choosing V̂ext, then solves the Schrödinger equation

for the wave function ψ, and then observables are computed by taking the expectation

values of the corresponding operators with this wave function ψ. For example the electron

density can be calculated as

ρ(r) = N
∫
...
∫

|ψ(r, r2, r3, .....rN )|2dr2dr3....drN (2.4)

The Born-Oppenheimer approximation does simplify the Schrödinger equation, but it

is still a formidable problem when one deals with many electron system. The methods

like configuration interactions and diagrammatic perturbation theory are successful in

dealing with systems with few electrons, but they are computationally intractable for

large clusters of atoms and impossible for solids where there are ∼ 1020 valence electrons.

The breakthrough in tackling this problem came with the advent of Density Functional

Theory (DFT) which is discussed briefly in the following section.

2.3 Density Functional Theory

In late 1920’s Thomas [2] and Fermi [3] introduced the idea of expressing the total energy of

a system as a functional of the total electron density. Since then this idea of using electron

density as a variable to express the energy of a system has undergone various stages

of developments. The real breakthrough was brought about by the Hohenberg-Kohn’s

two theorems [4] and later by the variational formulation of the Kohn-Sham equation

[5]. Presently DFT is considered to be one of the most successful quantum mechanical

methods in tackling many body problem where ‘strong correlation’ is not an issue. The

importance of DFT can be emphasized by the fact that Kohn, one of its developers, and
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Pople, who played instrumental role in implementing DFT in computational chemistry

were awarded by the Nobel prize in 1998.

2.3.1 The Hohenberg-Kohn Theorems

In 1964 Hohenberg and Kohn proved two theorems [4]. Their first theorem showed that

the ground state electron density ρo(r) of a system of interacting electrons in some external

potential v(r) determines this potential up to an additive constant. The implication of

Hohenberg Kohn theorem is that since v(r) fixes H so does ρo(r) and hence the ground

state wave function ψo becomes unique functional of the ground state electron density

ρo(r). Thus, any observable O of a system in ground state also becomes functional of

ρo(r) and can be calculated by finding the expectation value of the corresponding operator

with the ground state wave function.

O = O[ρo(r)] =< ψ[ρo(r)]|Ô|ψ[ρo(r)] > (2.5)

For example, the ground state energy of the system can be calculated as

Eo = E[ρo(r)] = 〈ψ[ρo(r)]|H|ψ[ρo(r)]〉

Since ground state energy is a function of a number of parameters of the system, it can be

used to calculate the respective ground state properties by minimizing the ground state

energy with respect to these parameters.

For a given electron density ρ(r), the total energy can be cast explicitly in terms of

functional forms of the individual terms in the Hamiltonian as

E[ρ(r)] = T [ρ(r)] + Vee[ρ(r)] + Vext[ρ(r)], (2.6)

where T [ρ(r)] and Vee[ρ(r)] are universal functionals [independent of v(r)] and can be

found using Eqn. (2.5). The last term in Eqn. (2.6) is system dependent and can be
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found as

Vext[ρ(r)] =
∫
dr ρ(r)v(r) (2.7)

The second Hohenberg-Kohn theorem establishes the variational principle. The ground

state energy and density correspond to the minimum of some functional E[ρ(r)] subject

to the constraint that the density contains the correct number of electrons in the system.

δ
{
E[ρ(r)] − µ

(∫
ρ(r)dr −N

)}
= 0, (2.8)

where the Lagrange’s multiplier µ is the electronic chemical potential. This implies

that given any trial density ρt(r) of a system of N electrons in an external potential v(r),

the total energy calculated with this density will always be greater than or equal to the

ground state energy Eo.

T [ρt(r)] + Vext[ρt(r)] + Vee[ρt(r)] = E[ρt(r)] ≥ Eo (2.9)

The equality sign holds only for the ground state density ρo(r). Thus, the ground

state energy of the system can be retrieved by minimizing Eqn. (2.6) with respect to

ρ(r). The function that minimizes the energy is the ground state density ρo(r) and the

corresponding energy is the ground state energy.

However, there are practical difficulties in this minimization scheme. First of all,

one does not know the exact form of the functionals T [ρ(r)] and Vee[ρ(r)]. One can split

Vee[ρ(r)] into classical and non-classical parts. The classical part is just the Hartree energy.

Still the functional forms of kinetic energy term and non-classical part of potential energy

remain unknown. So, to start with we need reliable approximations for them. Second,

the minimization of E[ρt(r)] is a tough numerical problem on its own.

One may try to express kinetic and potential energy terms in terms of first and second

order density matrices γ1(x
′
1,x1) and γ2(x

′
1,x

′
2;x1,x2). These density matrices are defined

as
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γ1(x
′
1,x1) = N

∫
. . .
∫
ψ∗(x′

1,x2 . . . rN)ψ(x1,x2 . . .xN) dx2 . . . dxN (2.10)

γ2(x
′
1,x

′
2;x1,x2) =

N(N − 1)

2∫
..
∫
ψ(x′

1,x
′
2,x3, ...xN)ψ∗(x1,x2,x3, ...xN)dx3 . . . dxN(2.11)

The summation over spin coordinates results the spinless density matrices. The first

and second order spinless density matrices are given by

ρ1(r
′
1, r1) =

∫
γ1(r

′
1s1, r1s1)ds1 (2.12)

ρ2(r
′
1, r

′
2; r1, r2) =

∫ ∫
γ2(r

′
1s1, r

′
2s2)ds1ds2 (2.13)

The diagonal elements of ρ1(r
′
1, r1) is just the electron density

ρ(r1) = ρ1(r1, r1)

= N
∫
. . .
∫
|Ψ|2ds1dx2 . . . dxN (2.14)

The diagonal elements of ρ2(r
′
1, r

′
2; r1, r2) gives the electron pair density

ρ2(r1, r2) = ρ2(r1, r2; r1, r2)

=
N(N − 1)

2

∫
. . .
∫

|Ψ|2ds1ds2dx3 . . . dxN (2.15)

One particle density and two particle density (the pair density) are related by the expres-

sion

ρ(r1) =
2

N − 1

∫
ρ2(r1, r2)dr2 (2.16)

The total energy functional can be expressed in terms of one and two particle densities as

E = E[ρ1(r
′
1, r1), ρ2(r1, r2)]

=
∫

[−
1

2
▽2 ρ1(r

′, r)]r′=rdr +
∫
v(r)ρ(r)dr +

∫ ∫ 1

r12

ρ2(r1, r2)dr1dr2 (2.17)

The three terms on the right of Eqn. (2.17) represent kinetic energy, nuclear-electron

potential energy and the electron-electron potential energy respectively. The last term
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can be further simplified if we express ρ2(r1, r2) in terms of pair correlation function

h(r1, r2) as

ρ2(r1, r2) =
1

2
ρ(r1)ρ(r2)[1 + h(r1, r2)] (2.18)

Using Eqs. (2.16) and (2.18), we get

N − 1

2
ρ(r1) =

1

2
[N +

∫
ρ(r2)h(r1, r2)dr2] (2.19)

The quantity ρ(r2)h(r1, r2) = ρxc(r1, r2) is known as exchange correlation hole. It inte-

grates to -1; i.e.
∫
ρxc(r1, r2)dr2 = −1 (2.20)

The electron-electron potential energy term in Eqn. (2.17) can be expressed in terms of

exchange correlation hole as

Vee =
1

2

∫ ∫ 1

r12

ρ(r1)ρ(r2)dr1dr2 +
1

2

∫ ∫ 1

r12

ρ(r1)ρxc(r1, r2)dr1dr2 (2.21)

Now one may try to minimize Eqn. (2.17) with respect to ρ2(r1, r2) (since ρ(r1) is related

with ρ2(r1, r2) via Eq. 2.16). This approach suffers a major obstacle with the requirement

that ρ2(r1, r2) must correspond to some antisymmetric wave function. Although a formal

solution of this N-representability problem exists, it does not lead to efficient minimization.

The problem is overcome by Kohn-sham approach [5]. in which the kinetic energy

functional is decomposed into two parts:

T [ρ(r)] = Ts[ρ(r)] + Tc[ρ(r)], (2.22)

where Ts[ρ(r)], known as Kohn-Sham kinetic energy, represents the kinetic energy of

non-interacting particles having the same density ρ(r) as that of the original interacting

particles and Tc represents the remainder of the kinetic energy arising due to the effect of

interactions between them.
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Ts[ρ(r)] can be found exactly from Hartree-Fock theory:

Ts[ρ(r)] = −
1

2

N∑

i

〈ϕi(r)| ▽
2 |ϕi(r)〉 (2.23)

where ϕi are one-electron orbitals (known as Kohn-Sham orbitals) for non-interacting

system. Within this scheme the main part of total kinetic energy is calculated exactly.

The energy functional of Eqn. (2.6) within Kohn-Sham approach can be written as:

E[ρ(r)] = Ts[ϕi[ρ(r)]] + VH [ρ(r)] + Exc + Vext[ρ(r)], (2.24)

where the Hartree energy, VH represents the energy arising from classical Coulomb

interaction. The non-classical parts of T[γ1] and Vee[γ2] are included in Exc, known as

exchange correlation energy, i.e.

Exc[ρ, γ1, γ2] = T [γ1] − Ts[ρ] + Vee[γ2] − VH [ρ]

The minimization condition for Eqn. (2.24) can be written as

δE[ρ(r)]

δρ(r)
= 0 =

δTs[ρ(r)]

δρ(r)
+
δVext[ρ(r)]

δρ(r)
+
δVH [ρ(r)]

δρ(r)
+
δExc
δρ(r)

=
δTs[ρ(r)]

δρ(r)
+ v(r) + vH(r) + vxc(r), (2.25)

The minimization condition for a system of non interacting particles moving in the

potential vs(r) can be written as:

δE[ρ(r)]

δρ(r)
= 0 =

δTs[ρ(r)]

δρ(r)
+
δVs[ρ(r)]

δρ(r)

=
δTs[ρ(r)]

δρ(r)
+ vs(r) (2.26)

Comparing Eqs. (2.25) and (2.26) we find that both minimization schemes yield the

same solution ρs(r) ≡ ρ(r), if vs is chosen to be
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vs(r) = v(r) + vH(r) + vxc(r) (2.27)

The ‘Schrödinger-like’ Kohn-Sham equation for this auxiliary system in which electrons

move in effective potential vs can be written as

[
−

1

2
▽2 +vs(r)

]
ϕi = ǫiϕi(r) (2.28)

The solution of this equation yields orbitals that reproduce the density ρ(r) of the

original interacting system.

ρ(r) ≡ ρs(r) =
N∑

i

fi|ϕi(r)|
2, (2.29)

where fi is the occupancy of the orbital. Equations (2.28) and (2.29) are celebrated

Kohn-Sham equations. These equations are like single-particle Schrödinger equations,

however the many body effects are still there in the form of exchange correlation func-

tional. Because of these equations DFT became viable tool for studying macroscopic

systems.

Since vs(r) depends on ρ(r), and ρ(r) depends on ϕi which are the solutions of the

Kohn-Sham equation, Eqn. (2.29) has to be solved self consistently. One first starts with

the initial guess for ρ(r), calculates the corresponding vs(r), and then solves Eqn. (2.29)

for ϕi. From these ϕi new density ρ(r) is calculated and the process is repeated until

convergence is achieved.

2.4 Approximations to Exchange-Correlation Functional

The calculation of vs(r) is not possible without the knowledge of the exchange correlation

functional vxc(r) which contains all the many body effects. The explicit density functional
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form of vxc(r) is not known and has to be approximated. The accuracy of DFT largely

depends on the quality of the approximation for vxc(r).

2.4.1 Local Density Approximation

The simplest and remarkably successful approximation to vxc(r) is the local density ap-

proximation (LDA). In this approximation the exchange correlation energy is expressed

in terms of exchange correlation energy of a homogeneous electron gas [5].

ELDA
xc [ρ(r)] =

∫
ρ(r)εxc(ρ(r))dr, (2.30)

where εxc(ρ(r)) is the exchange correlation energy per particle of a homogeneous elec-

tron gas of density ρ(r), and can be decomposed into exchange and correlation contribu-

tions :

εxc(ρ(r)) = εx(ρ(r)) + εc(ρ(r))

The expression for exchange part was derived by Bloch and Dirac:

εx(ρ(r)) = −
3

4

(
3ρ(r)

π

)1/3

The functional form of correlation energy, εc is not known. Earlier approximate expres-

sions for εc were based on perturbation theory. Now a days it is obtained in a parametrized

form with the help of Quantum Monte Carlo (QMC) techniques.

In spite of this rather crude approximation, LDA is successful in reproducing accurate

band structures and total energies for many systems. However, it has well known limita-

tion of over binding the electrons in molecules due to which it predicts stability of some

unstable molecules. One way to improve LDA is to incorporate electron’s spin into it.

This leads to the Local Spin Density Approximation (LSD) which can be expressed as

ELSD
xc [ρ↑(r), ρ↓(r)] =

∫
dr ρ(r) εxc(ρ↑(r), ρ↓(r)), (2.31)
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where ρ(r) = ρ↑(r)+ρ↓(r). As in the case of LDA, ε(ρ↑(r), ρ↓(r)) can be decomposed into

exchange and correlation parts :

εxc(ρ↑(r), ρ↓(r)) = εx(ρ↑, ρ↓) + εc(ρ↑, ρ↓)

The exchange contribution comes from the electrons having similar spin and hence is

dependent on spin polarization parameter

ξ =
ρ↑(r) − ρ↓(r)

ρ(r)

ξ attains the value of 1 for completely spin polarized system and 0 for fully spin

compensated system. The exchange part of εxc(ρ↑(r), ρ↓(r)) is given by

εx(ρ↑, ρ↓) = εx(rs, ξ) = εPx (rs) + [εFx (rs) − εPx (rs)] f(ξ), (2.32)

where rs is the radius of the effective sphere for an electron,

rs =

(
3

4πρ(r)

)1/3

The superscripts F and P in Eqn. (2.32) represents the fully spin polarized (ferromag-

netic) and fully spin compensated (paramagnetic) cases respectively. The relations be-

tween the terms εPx (rs) and εFx (rs) is given by

εPx (rs) = 2−1/3εFx (rs) = −
3

rs

(
9

32π2

)
(2.33)

The function f(ξ) in Eqn. (2.32) is given by

f(ξ) =
(1 + ξ)4/3 + (1 − ξ)4/3 − 2

2(21/3 − 1)
. (2.34)

The excess correlation energy which results from the interactions between all electrons

(unlike exchange energy) is given by
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εc(ρ↑, ρ↓) =
∫
ρ(r) ǫc(ρ(r), ξ) dr, (2.35)

However, the precise form of ǫc(ρ(r), ξ) is not known. There are analytical expressions

for limiting cases like low density limit [6] and high density limit [7, 8]. von Barth and

Hedin [9] proposed an expression for ǫc(ρ(r), ξ) based on random phase approximation

(RPA). The expression has similar form as of Eqn. (2.32):

ǫBHc (ρ(r), ξ) = εPc (rs) + [εFc (rs) − εPc (rs)] f(ξ), (2.36)

A modified form of ǫBHc has been proposed by Vosko, Wilk and Nusair [10]

ǫVWN
c = εPc (rs) + α(rs)

[
f(ξ)

f ′′(0)

]
[1 + β(rs)ξ

4], (2.37)

where α(rs) is the spin stiffness, related to spin susceptibilities and β(rs) is adjusted to

satisfy ǫ(rs, 1) = εFc (rs), i.e.

1 + β(rs) = f ′′(0)
εFc (rs) − εPc (rs)

α(rs)
(2.38)

ǫVWN
c usually enhances the magnetic moments and magnetic energies compared to ǫBHc .

2.4.2 Generalized Gradient Approximation

The electron density in a real system is not uniform rather it is spatially varying. Thus,

the inclusion of the gradient of density into the exchange correlation functional would

clearly improve the accuracy. The functionals that include the gradients of the charge

density are known as generalized gradient approximations (GGA). The form of GGA

functional is given by

EGGA
xc =

∫
f
(
ρ↑(r), ρ↓(r),▽ρ↑(r),▽ρ↓(r)

)
dr. (2.39)
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There exists different expressions for f proposed by different authors. The accuracy

of GGA depends on the type of f used. The widely used GGAs are Perdew and Wang

(PW91) [11], Perdew, Burke and Ernzerhof (PBE) [12] and BLYP which is a combination

of Becke’s 1988 exchange functional [13] and the 1988 correlation functional of Lee, Yang

and Parr [14]. In this thesis we have mostly used PBE functional. It preserves all the

requiremens of LSDA. It is made to satisfy further physical constraints by incorporating

the dependence on reduced density gradient s = | ▽ ρ|/(2kFρ). Thus, PBE exchange

correlation energy depend on ρ, s and ξ:

EPBE
XC =

∫
drρ(r) (rs(r), s(r), ξ(r)) . (2.40)

2.5 Plane Waves and Pseudopotentials

In order to solve the Kohn-Sham equation, we expand Kohn-Sham orbitals in terms of a

basis set. Within DFT framework plane wave pseudo-potential approach has been widely

used for electronic structure calculations of large, many-atomic systems like clusters and

solids. Plane wave basis expansion is mathematically simple and coupled with pseudo-

potential approach the size of basis can be drastically reduced. The plane wave and

pseudo-potential approaches are detailed in the following two sections.

2.5.1 Plane Waves

The expansion of the KS orbitals in a given basis leads to

ϕi(r) =
∑

j=1

cjφj(r), (2.41)

where φj(r) are basis functions. Plane waves are suitable choice for basis functions φj(r).

Plane waves are orthonormal and energy independent, and hence converts the KS equation

to a simple matrix eigenvalue problem for the expansion coefficients. Plane waves are
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unbiased, i.e. they are independent of any particular atom. They are also independent

of atomic positions and hence the Hellmann-Feynman theorem can be directly applied to

calculate forces on the ion-cores. These forces allow us to relax the structure and carry

out molecular dynamics to ascertain the equilibrium structure. The electronic structure

determination is carried out on the equilibrium structure, i.e. when the forces on all ion-

cores are below a suitably small threshold value. The Pulay terms in the force calculations

which arise because of changes in the basis themselves when the ion-cores move, are

identically zero. These properties of the plane wave basis make it a popular choice for

basis functions. Ideally the plane wave basis are applicable only to KS orbitals for periodic

infinite solids for which the Bloch Theorem is valid, however, they can also be applied for

the electronic structure calculations of point defects, surfaces, molecules and clusters by

making use of periodic super-cell. The size of the super-cell should be large enough to

avoid interaction between its periodic images.

The potential of a periodic system has the periodicity of the underlying lattice, i.e.

V (r + R) = V (r)

where R is the Bravais lattice vector. According to Bloch’s theorem, a wave function in

a periodic potential can be expressed as

ϕj(r) = ujn(r,k) expik·r (2.42)

where n is the band index and k is a vector confined to the first Brillouin zone. The

function ujn(r,k) is a periodic function having the same periodicity of the Bravais lattice.

Therefore, it can be expanded as a set of plane waves:

ujn(r,k) =
∑

G

cj,n,G expiG·r, (2.43)

where G is the reciprocal lattice vector. Using Eqs. (2.42) and (2.43) we arrive at
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ϕj,k(r) =
∑

G

cj,k+Ge
i(k+G).r (2.44)

In order to reproduce the actual wave function ϕj,k(r) an infinite number of basis

functions in the expansion would be needed. However, in practice only a finite number of

basis functions are taken for the sake of computational convenience. The number of basis

functions is controlled by choosing a certain value for the wave vector in the expansion

of Eqn. (2.44). This is equivalent to imposing a cut off on kinetic energy, as the kinetic

energy of electron with wave-vector k is proportional to |k + G|2.

2.5.2 Pseudopotentials

Plane wave basis requires large number of basis functions to describe the wave functions

close to nucleus. This is due to two reasons: first the wave function near to nucleus shows

steep behavior and second the orthogonality requirements between the valence and core

electron wave functions causes rapid oscillation of valence wave functions near the core

region.

The problem can be simplified by the use of pseudo-potential approximation. Since

the wave functions near the core is shielded from the outer region and most of properties

of matter depend only upon valence wave functions, one can replace the potential in core

region by a pseudo-potential. Pseudo-potential is designed to yield very smooth wave

function (nodeless) in core region (thus requiring less number of plane waves) and the

actual wave function outside the core region. Thus the chemically important valence

electrons feel almost the same environment as before. This approximation drastically

reduces the number of plane waves which can be managed on computers.

Pseudo-potentials are usually generated from all electron calculation for an atomic

reference configuration. The all electron KS equation is solved self consistently under the

framework of DFT. The solution of all electron KS equation
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−
1

r2

d2

dr2

(
r2ϕiL(r, ǫL)

)
+

[
ℓ(ℓ+ 1)

r2
+ V [ρ] − ǫL

]
ϕiL(r, ǫL) = 0, (2.45)

where L = (ℓ,m) are the composite angular momentum indices, yields the self consistent

potential V as well as the all-electron wave functions and energy eigenvalues. The resulting

valence eigenvalues are substituted back into the KS equation, but with a parametrized

pseudo wave-function. The KS equation is then inverted to get the pseudo-potential.

Pseudo-potentials must obey certain criteria :

• Outside the core region the pseudo wave function ϕpsi (r) must match the actual

wave function ϕi(r) : ϕpsi (r) = ϕi(r) for r > rc

• The pseudo wave function must be continuous at the cut off radius, and so must be

its first and second derivatives : ∂mϕpsi (rc)/∂r
m = ∂mϕi(rc)/∂

mr for m=0,1,2.

• The valence all-electron and pseudo-potential eigen values must be equal : ǫpsi = ǫi

Apart from these a good pseudo-potential must be soft and transferable. A pseudo-

potential is soft if it requires less number of plane waves. A pseudopotential is transferable

if it works reasonably well in different environments.

Norm conserving pseudo-potential (NCPP) [15, 16] are constructed with an extra

constraint that the pseudo wave function must preserve the charge density inside the core

region :

∫ rc

0
|ϕpsi (r)|2r2dr =

∫ rc

0
|ϕi(r)|

2r2dr (2.46)

NCPP works well for most elements except for some first period 2p and 3d elements.

In these cases norm conserving pseudo wave-functions are not significantly smoother than

the all-electron wave function. For these elements a large energy cut off is required to

obtain desirable results. To make pseudo wave-function softer rc has to be increased
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which decreases transferability. Thus one has to make a compromise between softness

and transferability.

The norm conserving condition forces the wave function to vary rapidly thus requiring

larger basis set. To get rid of this problem Vanderbilt [17] developed a new pseudo-

potential by relaxing the norm conservation constraint. Such pseudo-potential requires

much less number of plane waves and hence known as ultra-soft pseudo-potential.

2.6 Projector Augmented Wave Method

The projector augmented wave (PAW) method [18, 19] is an all-electron method. The

usual pseudo-potential method has two main drawbacks: requirement of large basis set

for the accurate description of bonding and tail region, and lack of good description of

nodal structure of the wave function near the core region. PAW method overcomes these

problems by using the wave function which is combination of pseudo wave function and

expansions of atomic and pseudo atomic orbital terms.

PAW method uses a linear transformation τ that maps the true all-electron wave

functions |ψn〉 with their nodal structure on to smooth auxiliary wave functions |ψ̃n〉.

|ψn〉 = τ |ψ̃n〉, (2.47)

Inside augmentation region (|r − R| < rc), true and auxiliary wave function can be

expanded in terms of respective partial waves,

ψ =
∑

i

ci|φi〉, ψ̃ =
∑

i

ci|φ̃i〉

where i is a composite index referring to the atomic site R, the k index and the quantum

numbers ℓ and m. The coefficients in these expansions are given by

ci = 〈p̃i|ψ̃〉
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where 〈p̃i| are projector functions. Inside the augmentation region the projector functions

satisfy the relations

∑

i

|φ̃i〉〈p̃i| = 1, 〈p̃i|φ̃j〉 = δij

The operator τ has to modify the auxiliary wave function in the augmentation region to

reproduce the correct nodal structure. Outside the augmentation region it should not

change the auxiliary wave function. Thus, the proper expression for τ is

τ = 1 +
∑

i

(
|φi〉 − |φ̃i〉

)
〈p̃i| (2.48)

where the sum runs over all partial waves of all atoms. Using Eqs. (2.47) and (2.48), the

true wave function can be expressed as

|ψ〉 = |ψ̃〉 +
∑

i

(
|φi〉 − |φ̃i〉

)
〈p̃i|ψ̃〉

The expectation values can be obtained either from the true wave function or from aux-

iliary wave functions

〈A〉 =
∑

n

fn〈ψn|A|ψn〉 +
Nc∑

n=1

〈φcn|A|φ
c
n〉 =

∑

n

fn〈ψ̃n|τ
†Aτ |ψ̃n〉 +

Nc∑

n=1

〈φcn|A|φ
c
n〉 (2.49)

where fn are the occupancies of the valence states and Nc is the number of core states.

Using Eqn. (2.49) the all-electron charge density in PAW method is given by

ρ(r) = ρ̃(r) + ρ1(r) − ρ̃1(r),

where ρ̃(r) is the soft auxiliary charge density which can be calculated from the auxiliary

wave function

ρ̃(r) =
∑

n

fn〈ψ̃n|r〉〈r|ψ̃n|r〉,



Chapter 2. Theoretical background for electronic structure calculations 23

and on-site charge densities are defined as

ρ1(r) =
∑

ij

ρij〈φi|r〉〈r|φj〉, ρ̃1(r) =
∑

ij

ρij〈φ̃i|r〉〈r|φ̃j〉

The occupancy ρij can be found from auxiliary wave function applying the projector

function,

ρij =
∑

n

fn〈ψ̃n|p̃i〉〈p̃j|ψ̃n〉

2.7 Comments

In the work that follows we shall base our calculations on the density functional theory.

We shall solve the KS equation in a projector augmented plane wave basis. The molecular

dynamics can be carried out using the Hellman-Feynman forces. These are all embodied

in the Vienna ab-initio simulation package (VASP). This simulation package will be our

main tool in the work presented in this thesis. This chapter represents an understanding

of the theoretical basis of the simulation package.



Chapter 3

Electronic and geometric properties of pristine ZnO

clusters

In this chapter we study small stoichiometric clusters of (ZnO)n in the size range 2≤n≤121.

We shall present ground state geometries, binding energies, relative stabilities and HOMO-

LUMO gaps of these clusters. We shall discuss how these properties evolve with the

increasing size of clusters.

3.1 Introduction

Nano-structures of ZnO have emerged as promising materials because of their prospects

in applications in catalytic [20], electrical [21], opto-electronic [22] and quantum devices

[23]. The understanding of structural and electronic properties is important for better

optimization of these materials to enhance their applicability. We have attempted to

study these properties by performing the first principles calculations on small clusters

of ZnO. As clusters bridge the space between the small molecule, the nano-particle and

1This Chapter is based on the papers:

(i) Band-gap variation in Mg- and Cd-doped ZnO nanostructures and molecular clusters, Phys. Rev. B

76 (2007) 195450; Manoj K Yadav, Manoranjan Ghosh, Ranjit Biswas, Arup K Raychaudhuri, Abhijit

Mookerjee and Soumendu Datta.

(ii) Study of the electronic and structural properties of ZnO clusters, Int. J. Mod. Phys. B (in press);

Manoj K Yadav, Biplab Sanyal and Abhijit Mookerjee.

24
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bulk materials, their study will be helpful for better understanding the evolution of various

properties with the increase in size of the clusters. Moreover, clusters display many unique

properties due to their specific geometry and quantum confinement effect. While there

are hosts of studies on elemental clusters, very few reports on bi-elemental semiconductor

clusters can be found [24, 25, 26]. First principles studies on small clusters of ZnO have

been carried out earlier by Matxain et al. [24]. Bulgakov et al. [27] produced small

ZnO clusters by laser ablation method and investigated them using time of flight mass

spectrometry.

It will be useful to carry out a systematic first-principles theoretical study of clusters

of (ZnO)n using the soft-pseudo-potential technique ideally set up for clusters contain-

ing an element with d-electrons whose potentials are pretty localized and deep. Such a

formulation is ideal for Zn containing clusters. This chapter aims toward this goal. We

shall determine the geometrical structures of ground states as well as that of the next

higher energy isomers of the clusters in the size range 2≤n≤12. We shall examine the

binding energy and the HOMO-LUMO gaps of the clusters as a function of their size.

These parameters will be helpful in determining relative stability of clusters. The studies

in this chapter lay the foundation of Chapter 4 where we shall focus on variation of band

gap in Mg/Cd doped ZnO nanostructures and molecular clusters.

3.2 Methodology

Our electronic and total energy calculations and shape optimization of the clusters will be

based on the projector augmented wave method (PAW). Blöchl [18] combined the density

functional based multiple scattering (the linearized augmented plane wave LAPW) and

the pseudo-potential (PP) approaches to present the computationally elegant, transferable

and accurate PAW. Kressé and Joubert [19] modified and codified this PAW technique

into the Vienna ab-initio pseudo-potential package (VASP) on which our present work
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will be based.

The mathematics of the PAW method has been described in detail elsewhere [18]. We

shall comment on the following :

• The electron-ion interaction were described by the pseudo-potential based ideas.

This is implicit in the PAW methodology.

• We have used the exchange-correlation functional suggested by Perdew, Burke and

Ernzerhof [12].

• The shape optimization was carried out via conjugate gradient algorithm imple-

mented in VASP.

• The starting point of shape optimizations were educated guesses and, for the smaller

clusters, these guesses were based on the results of Matxain et.al. [24]. The cluster

was then relaxed until the energy was minimized and the local forces were smaller

than 0.01 eV/Å.

The binding energies of (ZnO)n clusters are defined as follows :

EB = E[n] − n E[Zn] − n E[O] (3.1)

where E[n] is the total energy of the (ZnO)n cluster, E[Zn] is the energy of a single Zn

atom and E[O] is the energy of a single O atom.

The second difference in binding energy can be calculated as

∆2E(n) = 2 E(n) − E(n+ 1) − E(n− 1), (3.2)

where E(n+1) and E(n−1) are energies of (ZnO)n+1 and (ZnO)n−1 clusters respectively.

The quantity ∆2E(n) represents the relative stability of a cluster of size n with respect

to its neighbors.
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3.3 Results and Discussion

We shall begin with a brief description of the ground state and next higher energy local

minimum state structures of (ZnO)n clusters, before we describe overall trends with size.

The structures of the ground and higher energy local minimum states of (ZnO)n clus-

ters for n = 2 to 7 are shown in Fig. 3.1. The ground state of (ZnO)2 is a rhombus with

the Zn and O atoms in a trans configuration. The Zn-O distances are 1.902 Å and O-

Zn-O and Zn-O-Zn angles 104.67o and 75o respectively. The structure has a point group

symmetry D2h. The local minimum state is a trapezium with Zn and O atoms in a cis

configuration. The Zn-O distances at 1.976 Å are considerably larger than the ground

state structure.

The ground and next higher energy local minimum state structures of (ZnO)3 are both

planar. The ground state belongs to D3h symmetry with a triangle of Zn atoms connected

by O atoms. The three Zn atoms form an equilateral triangle. The Zn-O distance has

now diminished to 1.832 Å : less than that in (ZnO)2. As expected, the binding energy of

the trimer is more than that of the dimer. The Zn-O-Zn angles are 91o and O-Zn-O angles

149.4o. The local minimum state is a complex structure belonging to the Cs symmetry.

The ground state of (MgO)3 has very similar structure. However Calvo [25] finds this

to be regular hexagon, whereas we find a distorted hexagon with different O-Zn-O and

Zn-O-Zn angles.

We continue to get planar ring-like structures for n=4 also. This is a distorted square

with Zn-O-Zn angle 100.7o and O-Zn-O angle of 170o. It belongs to the D4h symmetry.

We note that as the cluster size increases, the O-Zn-O angles tend towards linearity from

∼ 105o for (ZnO)2 to 149o in (ZnO)3 to 170o here. The next higher local minimum state,

for the first time, is a distorted three-dimensional cube with two distorted squares with

O-Zn-O angles of 98.4o and Zn-O-Zn angles of 81o. This structure belongs to the Td

symmetry. The ground state structure of (MgO)4 was found by Calvo [25] as a perfect
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(ZnO)2g (ZnO)2l (ZnO)3g (ZnO)3l

(ZnO)4g (ZnO)4l (ZnO)5g (ZnO)5l

(ZnO)6g (ZnO)6l (ZnO)7g (ZnO)7l

(ZnO)7l

Figure 3.1: (ZnO)n clusters for n=2 to 7; large light spheres represent Zn atoms and

smaller darker (red) spheres the O atoms. The subscripts g and l stand for global and

local minima structures respectively.
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cube. This is in contrast with ZnO. However, Calvo used an empirical potential based

molecular dynamics. It would be interesting to repeat those calculations from a first-

principles approach like ours.

As the cluster size increases, for (ZnO)5 we carry on getting the planar ring-like struc-

tures as the ground state. The ground state structure of (ZnO)5 belongs to the symmetry

D5h with Zn-O-Zn angles of 110o and O-Zn-O angles almost linear at 178o. The ring

begins to deviate slightly from planarity with the O atoms falling slightly below the Zn

plane. The local minimum structure is again three dimensional with a distorted square

(ZnO)2 unit and a distorted hexagonal (ZnO)3 unit. Again, the ground state of (MgO)2,

as reported by Calvo [25], is very different : made out of a (MgO)4 unit and a (MgO)2

unit.

The ground state for (ZnO)6 continues to be an almost planar ring withD6h symmetry.

The Zn-O-Zn angles are 116o and the O-Zn-O angles are almost linear at 179.7o. The

next higher energy structure is the three dimensional structure with two (ZnO)3 units

belonging to the D3d symmetry sitting one above another. For (ZnS)6 this is the ground

state, while (MgO)6 has a prism like ground state. At this stage, we begin to notice the

differences between ZnO and MgO which have very different structures in the bulk and

these structures in the clusters give some inklings of the bulk ones.

The ground state for (ZnO)7 is again a planar ring belonging to D7h symmetry. The

Zn-O-Zn angles are 122o and O-Zn-O angles are linear. We have observed that there is

a competition between planar and three-dimensional structures. For the smaller clusters

planar structures, and in particular, ring-like planar structures are more stable. At (ZnO)7

one more planar structure with a (ZnO)4 ring connected with a (ZnO)3 ring becomes the

next higher energy local minimum state. However, there is also a three dimensional

structure which is a capped version of the (ZnO)6 three-dimensional structure, and is

very near in energy to the planar one.
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(ZnO)8g (ZnO)8l (ZnO)9g (ZnO)9l

(ZnO)10g (ZnO)10l (ZnO)11g (ZnO)11l

(ZnO)12g (ZnO)12l

Figure 3.2: (ZnO)n clusters for n =8 to 12; large spheres represent Zn atoms and smaller

spheres the O atoms. The subscripts g and l stand for global and local minima structures

respectively.

Figure 3.2 shows the ground state and next higher energy structures for (ZnO)n;

n=8. . . 12. When we come to the critical size of (ZnO)8 there is a transition of stability

from planar rings to three-dimensional ground state structures. By the time we reach

(ZnO)7 the difference in energy between the planar and the three-dimensional structures

is already less than 0.5 eV [see Fig. 3.6 (Right)]. For (ZnO)8 the ground state structure

which is two (ZnO)4 rings attached atop each other with (ZnO)2 units, belongs to D4d

symmetry. The next higher energy isomer is also three dimensional and made up out of

four (ZnO)3 and six (ZnO)2 rings. It is at this size that formation of spheroidal structures
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reminiscent of fullerenes reported by Behrman et al. [28] begins to show up. Up to size

(ZnO)7 the Zn-O bond lengths kept decreasing in the planar ring structures. Now, as the

three-dimensional structures stabilize the average Zn-O bond length suddenly increases to

1.859 Å . The Zn-O-Zn angles are now 112o and O-Zn-O angles 158o. It should be noted

that none of the constituent rings of the three-dimensional structures are truly planar.

The Zn atoms sit on a plane, but the O atoms deviate alternately from it.

The ground state structures for clusters with n ≥ 9 are built out of (ZnO)3 and

(ZnO)2 units, i.e hexagons and rhombus. This tendency of forming spheroidal structures

with these units is characteristic of ZnO clusters with large n. The (ZnO)12 is the most

spheroidal in shape in the size range 2≤n≤12. In this it resembles C60, but unlike it,

it is unstable with respect to the macroscopic crystal. These structures differ from the

fullerenes in the sense that while fullerenes have pentagons and hexagons, these structures

have rhombus and hexagons. Here we do not expect pentagons, since that will force like

atoms to bond, which is energetically unfavorable in the case of ZnO. This tendency of

forming spheroidal structures appear to be rather surprising that atoms interacting via

central forces spontaneously form hollow spheroidal shapes with all the atoms on the

surface. We would have expected compact shapes as found by Behrman et al. [28] for

NaCl. As the size increases, the Zn-O distance decreases towards the bulk value. The

higher energy isomers for n = 9, 10, 11 and 12 are more open structures reminiscent of

MgO ground states found by Calvo [25]. For ZnO these are not stable shapes.

Figure 3.3 shows the average Zn-O distance as a function of cluster size. The figure

indicates an initial decrease in the average Zn-O distance as we go up the planar ring

structures indicating stronger Zn-O bonding. This stronger bonding leads to less than

linear O-Zn-O shapes at the smaller rings to almost linear O-Zn-O shapes at n=7. At

n=8 there is a sharp change which is a signature of the transition to stable three dimen-

sional shapes. The ground state remains three-dimensional as cluster size increases. The

Zn-O bond length decreases again with further increase in size. The stability of these
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Table 3.1: The table shows a summary of the energetics and bond lengths for (ZnO)n

clusters with n=2, . . . 12.

Size EB EB/ZnO Eg ∆2E dZn−O

n (eV) (eV) (eV) (eV) (avg) A

1 2.12 2.12 0.34 1.70

2 8.16 4.08 1.08 -1.83 1.90

3 16.04 5.35 2.76 0.82 1.83

4 23.12 5.78 2.85 0.63 1.80

5 29.54 5.91 2.93 0.27 1.78

6 35.70 5.95 2.81 0.13 1.78

7 41.74 5.96 2.90 -0.31 1.77

8 48.08 6.01 1.97 -0.18 1.99

9 54.60 6.07 1.97 0.15 1.96

10 60.97 6.10 2.34 -0.76 1.99

11 68.10 6.19 1.95 -0.66 1.95

12 75.89 6.32 2.33 1.94

three dimensional structures is driven from the increased coordination whereas for ring

structures the highly obtuse O-Zn-O angle is mainly responsible for their stability. In an

earlier paper by Finocchi and Noguera [29] on LixOy, it has been proposed that mean

coordination number may also provide insight into the planar to three-dimensional tran-

sition. However, for LixOy, the number of constituent atoms can vary causing gradual

increase in average coordination number. For (ZnO)n the number of Zn and O atoms are

equal for every cluster and the coordination number is either 2 for n ≤ 7 and 3 for n > 7.

Thus, the transition at n=8 agrees with the proposition of Finocchi and Noguera [29].

We next examine the energetics of the clusters. This is summarized in Table 3.1.

Figure 3.4 (Left) shows the binding energy in (ZnO)n clusters per ZnO unit. The filled

circles indicate the calculated energies in eV and the line shows the fitted form. The fitted
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Figure 3.3: The average Zn-O distance as a function of size of clusters.

expression is given by

Eb = −24.33 + 45.12 n
1

3 − 22.53 n
2

3 − 3.78 n (3.3)

The form is empirical and has been suggested by many authors [24, 25]. It is useful in

predicting the binding energy of larger clusters. The binding energy per ZnO unit in bulk

ZnO is around 7.52 eV [30]. The binding energy curve tends towards this value slowly

but we are nowhere near approaching this limit for clusters as small as 12 units.
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Figure 3.4: (Left) Binding energy per ZnO unit versus size of cluster n. The circles are

results of this work, while the dotted line represents the fitted function (3.3). (Right)

Second difference in binding energy versus size of clusters n.

The plot of second difference in binding-energies ∆2E (calculated using Eqn. 3.2)

as a function of size of clusters is shown in Fig. 3.4 (Right). The second difference in
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Figure 3.5: (Left) HOMO-LUMO gap versus size of clusters n. (Right) Energy difference

between ground states and the corresponding next higher energy isomers.

binding energy of a particular cluster indicates its relative stability with respect to its

neighbouring sizes. The peaks in the second difference in binding energy indicate higher

relative stability of the corresponding cluster, and can be compared with peaks in mass-

spectrograph of ZnO clusters. These stable clusters then neither add another unit and

stabilize themselves nor shed a unit to do so. Bulgakov [27] have carried out laser ablation

synthesis of ZnO clusters and have shown from a time of flight mass spectra the stability

of clusters of sizes n=6, 9 and 11. Their proposed shapes for the n=9 and n=11 clusters

closely agree with our prediction.

The stability of a particular structure can also be predicted with the magnitude of

HOMO-LUMO gap, Eg. A large HOMO-LUMO gap implies low chemical reactivity

because it is energetically less favourable to add electrons to a high-lying LUMO or extract

electrons from a low-lying HOMO, and thereby prohibiting the formation of a larger

cluster or breakup into smaller ones [31]. Thus the structure having larger HOMO-LUMO

gap is more stable and vice versa. Figure 3.5 (Left) shows the HOMO-LUMO gaps as

a function of cluster size. As expected large gaps in the planar ring structures indicate

their greater stability. There is a transition at n=8, as expected, a signature of the planar

to three-dimensional structures. The odd even oscillation of HOMO-LUMO gap usually

seen in elemental clusters [32, 33] is not evident here.
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Finally we show in Fig. 3.5 (Right), the energy difference between the ground states

and the corresponding next higher energy isomers as a function of cluster size. The figure

clearly shows that this energy difference is small for the larger clusters, which then tend

to isomerize at higher temperatures. Also, there is a sharp drop around n=8. This

indicates that the lower sized planar ring-structures are particularly stable and difficult

to isomerize. This is consistent with our other analysis.

3.4 Summary and Remarks

We have carried out a first-principles study of the structural and energetic characteristics

of (ZnO)n clusters in the size range 2 ≤ n ≤ 12. Our analysis shows that up to n=7 planar

ring structures are stable. However, at n=8 there is a transition to three-dimensional

stable structures. This transition is indicated by the sharp changes in HOMO-LUMO

gap, average bond length and also by the change in coordination from 2 to 3. The larger

(ZnO)n clusters are roughly spheroidal and made up of (ZnO)2 and (ZnO)3 units. The

stable structures around n=11 and 12 resembles fullerenes and this has led several authors

to speculate whether ZnO clusters form a “new class” of fullerenes. The analysis of the

binding energies, second derivatives of the binding energies and the HOMO-LUMO gaps

clearly indicate stability of n=3, 4, 6, 9 and 11 sized clusters. This is in qualitative

agreement both with earlier theories and time of flight mass spectrographic experiments.

3.5 Comments

The study of pristine ZnO clusters was a prelude to the study of doped ZnO. The idea

would now be to see how Mg/Cd doping affects the electronic properties of ZnO clusters.

This will be presented in the following chapters.



Chapter 4

Tailoring the band gap of ZnO by doping

This chapter deals with the defect induced variation of band gap of ZnO1. Two types of

substitutional defect, viz. Mg and Cd have been considered. The study extends over two

size regimes: nanostructures and molecular clusters of ZnO. We aim to investigate the

trend of variation of energy gap in both nanostructures and clusters of ZnO when these

are doped with Mg and Cd.

4.1 Introduction

ZnO is a direct band gap semiconductor with large band gap (3.37 eV) and large exciton

binding energy (59 meV). The band gap of direct nature is useful for efficiency of optical

devices and large band gap is useful for short wavelength emissions. The large exciton

binding energy is suitable for high temperature operations. Apart from these useful

properties ZnO is cheaper, abundant and its single crystal can be synthesized easily.

All these properties make ZnO an important material for applications in optoelectronic

[34, 35, 36] and quantum devices [23, 37]. A large variety of ZnO nano-structures like

nano-particles, nano-rods, nano-tubes and nano-wires, have been synthesized [38, 39] and

they have been successfully used in, for example, optical devices [40, 41].

1This chapter is based on the paper:Band-gap variation in Mg- and Cd-doped ZnO nanostructures

and molecular clusters, Phys. Rev. B 76, 195450 (2007); Manoj K Yadav, Manoranjan Ghosh, Ranjit

Biswas, Arup K Raychaudhuri, Abhijit Mookerjee and Soumendu Datta.

36
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Tailoring band gap of a material plays an important role in making the material

suitable for application to various devices operating at different frequencies. There are

various techniques for engineering band gap of a system. Shan et al. [42] have reported

pressure induced variation of band gap of Al doped GaN. In the nano size regime the

band gap of a system can be tuned by playing with the dimension of the system [43].

Another way of tailoring band gap of a material is by doping the material with suitable

dopants. In this method one can either increase or decrease the band gap of a material

by doping it with suitable dopants. Banking on this method there are several reports

[44, 45, 46, 47, 48] showing the variation of band gap of ZnO by doping it with Mg or

Cd. Ohtomo et al. [44] alloyed ZnO with MgO using the pulsed laser deposition (PLD)

method, and reported increase in band gap in the alloy. Decrease in band gap in Cd

doped ZnO has been reported by several authors [46, 47, 48]. Makino et al. [47] have

studied alloying of ZnO with CdO using PLD method, and found decrease in the band

gap in the alloy. Wang et al. [46] investigated the effect of Cd substitution in Zn1−xCdxO

nano-rods and nano-needles. They also found decrease in the band gap with increasing

concentration of Cd. Recently Wang et al. [49] reported a band gap of 3.66 eV in Mg

doped ZnO nanocrystals at 15% of Mg concentration. In the case of Cd doped ZnO they

could achieve a band gap as low as 2.9 eV at 10% of Cd concentration.

While there are host of experimental works showing the variation of band gap of doped

ZnO, there are very few theoretical works in this direction [50, 51]. We have carried out

first principles calculation on the variation of HOMO-LUMO gap in Mg/Cd doped small

ZnO clusters. As clusters bridge the gap between a molecule and the bulk material, in

this work we have tried to understand our experimental findings on Zn1−x(Mg,Cd)xO

nanostructures (10-15 nm) through a first principles theoretical study of clusters of sizes

about 6 Å. Though it may not be fair to compare two systems which differ in size by

an order in magnitude, the aim of this investigation is to look at qualitative trend with

varying doping concentration.
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With our findings from Chapter 3, we have chosen highly symmetrical cage-like stable

clusters (ZnO)9 and (ZnO)12 for Mg/Cd doping. The “band gap” which arises out of the

Kohn-Sham virtual orbital based density of states are always underestimated. We shall

therefore concentrate on the change in the band gap (or the HOMO-LUMO gap for finite

system) on doping, with the expectation that the errors in the doped and undoped cases

compensate each other.

For the synthesis of Zn1−x(Mg,Cd)xO alloy nano-structures we have chosen a solution

growth method for clear understanding of lower doping efficiency of Cd than that of Mg.

In this method mixing occurs at atomic level, so the material made by this method is

close to thermodynamic equilibrium phase. Therefore the doping efficiency of Mg and Cd

into ZnO can be explained on the basis of cohesive binding energy of the corresponding

alloys. The change in the binding energies of Zn1−xMgxO and Zn1−xCdxO alloy molecules

from the parent compound ZnO determines the doping efficiency of corresponding dopant

atoms.

One needs to be cautious while investigating the effect of doping on the band gap

of ZnO nano-structures because in the quantum confinement regime band gap becomes

function of size [52]. In our experimental work we have used nano-structures of size 10-15

nm which lies beyond the quantum confinement limit (≤ 5nm). In the size regime we are

working (10-15 nm), the variation in band gap for small fluctuations in size (∼5 nm) is

very small (0.06 eV) compared to the change in band gap observed as the effect of doping.

4.2 Experimental Study

Before we describe our theoretical work on doping of ZnO clusters with Mg and Cd, we

shall first describe an experimental study on doped ZnO nano-structures. The experiment

was carried out in collaboration with experimental group of A.K. Raychaudhuri. We

should be pertinent to note that the experiments were done on nano-structures of size 10-
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15 nm. Given our computational resources, first principles studies on such large clusters

was not possible. So our idea would be to look at trends both with increasing size and

doping concentration.

4.2.1 Synthesis

Figure 4.1: TEM images of (Left) undoped ZnO nano-structures, (Middle) Mg doped

ZnO nano-structures and (Right) Cd doped ZnO nano-structures.

ZnO nano-structures were synthesized using acetate route. A 0.03 M NaOH solution

in ethanol was added in 0.01 M solution of Zn(CH3COOH)2,2H2O in ethanol kept at

65◦C. The final solution was stirred and heated at 65◦C for two hours. This method

allows precipitation of ZnO nano-particles and avoids precipitation of hydroxides if the

temperature is above 60◦C. For the purpose of making Zn1−xMgxO alloys, we added

different amounts of Mg(CH3COOH)2,4H2O to the Zn(CH3COOH)2,2H2O solution for

different doping concentration. The dispersions containing Zn1−xMgxO nano-particles

were washed with water by centrifugation. Finally the precipitates were collected by

dispersing them in ethanol for optical measurements.

The fabrication of Zn1−xCdxO nano-structures was not possible under similar con-

ditions as described above. This is because of the fact that incorporation of Cd into

ZnO leads to the decrease in cohesive binding energy. To achieve proper alloying, the

Zn1−xCdxO nano-structures were synthesized under high pressure to obtain higher boil-
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Figure 4.2: Absorption spectra of the nano-structures: (Left) Mg-doped nano-structure

and (Right) Cd-doped nano-structure.

ing point of ethanol (230◦)C. In order to synthesize Zn1−xCdxO alloy nano-structures, a

clear solution of 0.015 M Zn(CH3COOH)2,2H2O, 0.045 M NaOH and controlled amount

of Cd(CH3COOH)2,2H2O was prepared. Then the solution was taken in a Teflon lined au-

toclaves preset at 230◦C. The Zn1−xCdxO nano-structures thus prepared after two hours

of reaction within the autoclaves, were centrifuged and washed by water. The precipitates

were collected by dispersing in ethanol for optical measurements.

4.2.2 Characterization

The amounts of incorporated dopant atoms in the alloy nano-structures were found by

inductively coupled plasma atomic emission spectroscopy (ICP-AES). The maximum in-

corporation achieved in Zn1−xMgxO and Zn1−xCdxO were x=0.17 and 0.065 for the two

alloys respectively. Incorporation beyond these values could not be achieved as the phase

segregation starts to take place. The average size of the nano-structures were determined

by transmission electron microscope (TEM) as well as X-ray diffractometer (XRD) data.

The average size of undoped ZnO nano-structures lies in the range 10-15 nm as seen by

TEM image shown in the left panel of Fig. 4.1. The size of the alloy nano-structures were

also found to lie in the same range. Two representative TEM images of Zn1−xCdxO and



Chapter 4. Tailoring the band gap of ZnO by doping 41

Zn1−xMgxO alloy nano-structures are shown respectively in the middle and right panels

of Fig. 4.1. The sizes of the nano-structures were also determined by Williamson Hall

analysis of the XRD data and the results agree well with the TEM results.

4.2.3 Results and Analysis

The direct band gap values of ZnO and its alloy nano-structures have been determined

by monitoring the fundamental absorption edges of the room temperature absorption

spectra shown in Fig. 4.2. In the left panel of that figure we can see the gradual blue

shift of the fundamental absorption edge with the increase of Mg concentration. Also the

excitonic peak appearing in the absorption spectra of ZnO persists even after considerable

increase in Mg incorporation. The band gap of Zn1−xMgxO nano-structures increases

monotonously as we increase the Mg concentration. At 16.8% Mg concentration we could

achieve a band gap of 3.99 eV which is equivalent to 12.39% enhancement. On the other

hand Cd doped nano-structures show gradual red shift in fundamental absorption edge as

shown in the right panel of Fig. 4.2. We could achieve a band gap as low as 2.87 eV at only

6.50% Cd concentration. Kukreja et al. [48] have reported 12.76% enhancement in the

band gap in Mg-doped ZnO alloy at 14% Mg concentration. In the case of Cd-doped ZnO

alloy they have found about 13.95% decrease in the band gap at 8.0% Cd concentration.

In both cases our results compare well even though the method of fabrications were

quite different. We have fabricated nano-structures via solution route whereas Kukreja

et al. [48] have made alloy by the PLD method. Interestingly for the Zn1−xCdxO alloy

nano-structures, the excitonic behavior of the absorption spectra diminishes quickly as

soon as Cd incorporation starts to take place. Thus the large excitonic binding energy of

ZnO (60 meV) decreases sharply for Zn1−xCdxO contrary to the case of Zn1−xMgxO.
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Figure 4.3: Ground state structures of (Left) (ZnO)9 and (Right) (ZnO)12 clusters. Large

light (grey) spheres represent Zn atoms and smaller dark (red) spheres the O atoms.

4.2.4 Doped ZnO clusters

The computational details for study on clusters are similar to those outlined in Chapter

3. Figure 4.3 shows ground state structures of pristine (ZnO)9 and (ZnO)12 clusters.

These are almost spherical in shape and are made up of units of rhombus and hexagons.

The analysis of second difference in binding energy and HOMO-LUMO gap in Chapter

3 showed that these structures are relatively more stable, and therefore we have chosen

them for Mg/Cd doping. We have carried out substitutional doping of these clusters,

replacing Zn atom(s) by dopant atom(s). We have tried to place the dopant atoms as

random as possible to avoid practically unimportant segregated structures. The optimized

structures of (ZnO)12 cluster doped with 5 dopant atoms are shown in Fig. 4.4. The

structures doped with fewer atoms of Mg and Cd are not shown. The formation energy

for doping X (Mg,Cd) at Zn site of (ZnO)12 can be calculated using the relation,

Ef = E[Zn11XO12] − E[Zn12O12] − µX + µZn, (4.1)

where E[Zn11XO12] and E[Zn12O12] are energies with and without doping. µX and µZn

are chemical potentials for X and Zn respectively. The formation energies for Mg and Cd

doping are found to be -2.516 and 1.157 eV respectively, which indicate that such dopings

are reasonably achievable.
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Figure 4.4: Structures of (Left) Mg-doped (ZnO)12 cluster and (Right) Cd-doped (ZnO)12

cluster. Large light (grey) spheres represent Zn atoms and smaller darker (red) spheres

the O atoms. The dopant atoms (Mg or Cd) are shown as large darker (blue) spheres.

The left panel in Fig. 4.5 shows the variation of binding energy of the clusters with

increasing concentration of dopant atoms. The total binding energy of these doped clus-

ters increases with increasing concentration of Mg whereas it decreases with increasing

Cd concentration. This means that doping with Mg increases the stability of the clus-

ters whereas doping with Cd decreases stability. This is an important observation that

connects with the following experimental facts : (i) low doping efficiency of Cd compared

to Mg and (ii) increase in photo-luminescence peak of Zn1−xCdxO. The lower stability

of Zn1−xCdxO clusters give rise to fluctuations in the Cd content of the material as well

as overall lower Cd incorporation into ZnO as observed by several authors [47, 53]. The

larger value of formation energy for Cd doping than that for Mg doping also reflects that

Cd incorporation is less favorable compared to Mg incorporation.

The middle panel of Fig. 4.5 shows the variation of HOMO-LUMO gap with change

in dopant concentration in (ZnO)9 and (ZnO)12 clusters. In both clusters the HOMO-

LUMO gap increases with increase in Mg concentration while it decreases with increase

in Cd concentration. A cluster with a larger HOMO-LUMO gap is more stable and vice-

versa. Therefore the fact that increase in Mg concentration increases the HOMO-LUMO
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Figure 4.5: (Left) Variation of the binding energy with Mg and Cd doping. (Middle) Vari-

ation in energy gaps with doping for (ZnO)n clusters for n=9 and 12. (Right) Comparison

of theoretically obtained energy gaps in doped (ZnO)12 cluster with experimental energy

gaps in doped nanostructures. The dotted lines are for convenience of visualization.

gap and increase in Cd Concentration decreases HOMO-LUMO gap is consistent with

stability character shown by binding energy result. We also notice that as the size of the

clusters increases (from n=9 to n=12) the change in the band-gap decreases [Fig. 4.5

(middle)].

The experimental variation in band gap in nano-structure and the theoretically ob-

tained HOMO-LUMO gap in (ZnO)12 clusters with increasing concentration of Mg and

Cd are compared in the right panel of Fig. 4.5. Though it is not fair to compare the

variation in HOMO-LUMO of doped (ZnO)12 clusters with the band gap of rather larger

nano-structures, it is interesting to note that the trend is qualitatively similar. This re-

inforces our belief that if we carry out theoretical investigations on much larger clusters,

which is computationally very expensive, we will still get the same qualitative trends as

seen here.

Can we try to understand why the HOMO-LUMO gap increases when ZnO clusters

are doped with Mg and decreases when doped with Cd ? To answer this question, let us

look at the cluster (ZnO)12 and the two clusters Mg5Zn7O12 and Cd5Zn7O12 as shown in

Fig. 4.4. All the three clusters are constructed out of six-membered and four-membered
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Figure 4.6: Charge densities (Left) pristine ZnO, (Middle) Mg doped ZnO, and (Right)

Cd doped ZnO for (Top) (ZnO)3 ring and (Bottom) (ZnO)2 ring.

rings. Let us look at the charge densities on planes through one of these rings. These are

shown in Fig. 4.6. The figure shows the Zn2+, Mg2+ and Cd2+ ions sitting in the sea of

valence electron cloud. As compared to the pristine ZnO cluster, wherever a Mg2+ ion

sits, the charge density is pushed away from it towards the Zn2+ ions. The reverse is true

wherever a Cd2+ ion sits.

The consequence of this is that in the Mg doped ZnO, the increase of charge density

between the Zn ions leads to stronger bonding between them. The decrease in Zn-Zn

distance from 2.60 Å in pristine (ZnO)12 cluster to 2.54 Å in Mg doped cluster supports

this argument. From a simple tight-binding model of the cluster, this leads to an increase

in the off-diagonal matrix elements of the Hamiltonian and therefore the HOMO-LUMO

gap, which is essentially the energy difference between bonding and anti-bonding states

increases. In Cd doped ZnO, the charge between Zn ions deplete, leading to a weakening

of bonding between them. The Zn-Zn distance in this case increases to 2.64 Å, indicating

lower overlap between tight-binding basis orbitals and thus reduction in HOMO-LUMO
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gap.

The variation of band gap with Mg/Cd doping can also be explained on the basis of

electronegativity difference between X (X=Mg, Zn, Cd) and O atoms. The electronegativ-

ity difference between Mg and O is the largest and that between Cd and O is the smallest.

The X-O bonds are partially ionic and partially covalent. If we relate the ionicity of the

X-O bond to the electronegativity difference between X and O, then MgO should be the

most ionic and CdO the least with ZnO in the middle. The trend of increase in band gap

in Mg doped ZnO and decrease in band gap in Cd doped ZnO is thus consistent with the

ionicity theory of Phillips [54], Nelson and Batra [55], and Catlow and Stoneham [56].

4.3 Summary

We have studied the band gap variation in Mg/Cd doped nanostructures and small clusters

of ZnO. We have shown for the first time the tailoring of energy gap in ZnO clusters of

sizes less than 1 nm. The energy gap of both clusters and nanostructures of ZnO increases

with Mg doping while it decreases with Cd doping. The variation of HOMO-LUMO gap

in Mg/Cd doped ZnO clusters follows the similar trend of variation of band gap in Mg/Cd

doped nanostrucures. We have explained this behaviour on the basis bonding character

and ionicity. The energetics results show that Mg doping is energetically more favorable

than Cd doping. The stability of ZnO cluster increases with Mg doping while it decreases

with Cd doping.



Chapter 5

Magnetism in Cr doped ZnTe clusters

In this chapter we study magnetic properties of Cr doped ZnTe clusters1. As bulk and

thin films of Cr doped ZnTe have emerged as promising spintronic materials, we aim here

to investigate the magnetic behaviour of Cr doped ZnTe in the regime of cluster. We have

studied the energetically favorable doping sites for Cr in ZnTe host as well as the nature

of coupling between Cr atoms.

5.1 Introduction

Ever increasing trend in device miniaturization has prompted extensive research in low

dimensional systems [57]. The gas phase clusters exhibiting magnetism are considered

as potential candidate materials in data storage technology [58, 59]. The reduction of

dimension from bulk to nano-scale often gives rise to novel physical properties. For

example, 4−d elements like Ru, Rh, Pd which are non-magnetic in bulk phase have

been found to exhibit magnetism in the regime of small clusters [60, 61]. Similarly, due to

quantum confinement effect, small clusters of metal exhibit energy gap between HOMO

and LUMO. Moreover, the properties of clusters vary with the size and composition and

thus clusters of desirable properties can be synthesized by controlling these parameters.

1This chapter is based on the paper : Structural, electronic and magnetic properties of (ZnTe)12

clusters, J. Magn. Magn. Mater. 321 (2009); Manoj K Yadav, Biplab Sanyal and Abhijit Mookerjee.

47
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While there are several studies for magnetism in metallic and bimetallic clusters, the

study of magnetism in semiconductor clusters remains less explored. Nayak et al. [62]

have reported the occurrence of ferromagnetism in MnO clusters despite the fact that the

bulk MnO is a strong AFM system. Liu et al. [63] have studied magnetic properties of

Mn doped ZnO clusters. They have studied the nature of magnetic coupling between Mn

atoms at different distances. They found anti-ferromagnetic coupling for smaller Mn-Mn

separation while for larger Mn-Mn separation the AFM state was found to be degenerate

with FM state. Das et al. [64] have carried out density functional based study on Cr

doped small clusters of (GaN)n for n=1, 2 and 3. They have reported that ferromagnetic

coupling between Cr atoms in these clusters are favorable over antiferromagnetic ones.

We have studied the magnetic properties of Cr doped (ZnTe)12 clusters through first

principles calculations. The motivation is driven from the following promising reports:

(1) Cr doped thin film [65] and bulk [66] ZnTe have been found to exhibit room temper-

ature ferromagnetism,

(2) Ferromagnetism in Cr doped bulk ZnTe is more stable than other TMs (Mn, Fe, Co)

doped ZnTe [67], and

(3) Bulk ZnTe can be doped with fairly large concentration of TMs [68].

The structural and electronic properties of small clusters of pristine (ZnTe)n for n≤9

have been studied earlier by Matxain et al. [26]. They found planar ground state structures

for n≤5 and three dimensional cage-like ground state structures for n≥6, with n=7 being

an exception. The cage-like structures are made up of units of rhombi and hexagons.

With our earlier experience from ZnO clusters (Chapters 3 and 4), we have chosen ZnTe

cluster consisting of 12 ZnTe units for Cr doping. As in the case of (ZnO)12 here also

we found cage like ground state for (ZnTe)12 cluster. It is made up with units of rhombi

and hexagons, and resembles (ZnO)12 cluster. It is highly symmetric and has a large
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HOMO-LUMO gap (2.34 eV), and therefore should be a suitable candidate for doping.

Moreover our calculation suggests that binding energy of (ZnTe)12 cluster increases on

doping with Cr atom. Such enhancement of binding energy is one of the prerequisites for

a cluster to be a candidate for the synthesis of cluster assembled solids.

5.2 Computational Details

First principles density functional theory based calculations have been carried out under

PAW scheme [18, 19]. The exchange correlation energy is calculated using PBE functional

[12]. The pseudo-potentials of Zn, Te and Cr atoms were generated by including their d

electrons in the valence configuration. The clusters were placed in a super-cell whose size

was large enough (cube of sides ∼ 15 Å) to avoid interaction between periodic images

of the clusters. Single point (Γ) calculations have been carried out with plane wave cut

off of 276.7 eV. The geometries of the clusters have been optimized using the conjugate

gradient algorithm and the convergence was achieved till the Hellman-Feynman force on

each ion was less than 0.01 eV/Å.

5.3 Results and Discussion

5.3.1 Pristine (ZnTe)12 clusters

First we study the structure and stability of pristine (ZnTe)12 clusters which will be

helpful in analyzing the properties of doped (ZnTe)12 clusters. In order to investigate the

ground state structure of (ZnTe)12 several starting geometries including the bulk like zinc

blende structure were considered. The ground state structure (labeled as GS) and the

two closest local minimum structures (labeled as LM1 and LM2) of (ZnTe)12 are shown in

Fig. 5.1. The GS is a highly symmetric cage-like structure. Such cage-like structure has

also been found to be the ground state for (ZnO)12. It consists of six rhombi and eight
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GS LM1 LM2

Figure 5.1: Ground state (GS) and local minima (LM1 and LM2) structures of pristine

(ZnTe)12 clusters. White spheres represent Zn atoms and darker spheres represent Te

atoms.

hexagons, and appears like a C60 fullerene ( which, in contrast, has units of pentagons

and hexagons). There are two types of Zn-Te bonds, a shorter one (2.57 Å) connecting

two neighbouring rhombi and a larger one (2.64 Å) connecting a Zn atom and a Te atom

in the same rhombus. The diameter of the cage (as measured between the two farthest

Te atoms) is about 0.87 nm.

The calculated binding energies per atom of GS, LM1 and LM2 are 2.07, 2.01 and

1.98 eV, respectively. Thus, the ground state structure is energetically favourable over the

next higher energy structure by about 1.44 eV indicating its higher relative stability. The

binding energy per unit ZnTe of GS is about 4.14 eV which is less than the corresponding

bulk phase value of 4.82 eV suggesting the generally expected result that the clusters are

energetically less favourable than the corresponding bulk phase. The HOMO-LUMO gaps

in GS, LM1 and LM2 are 2.34, 1.43 and 1.42 eV respectively. The large HOMO-LUMO

gap of GS reflects its greater stability. The HOMO-LUMO gap of GS may be compared

with the value of the band gap of 2.26 eV for bulk ZnTe in zinc blende structure. The

qualitative aspect of increase in energy gap in clusters due to quantum confinement effect is

clearly reflected, but quantitative estimate will certainly be erroneous due to the limitation

of ground state DFT. Akin to nonmagnetic bulk ZnTe, all the pristine (ZnTe)12 clusters
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shown in Fig. 5.1 are closed shell systems without any local atomic magnetic moment.

5.3.2 Monodoped clusters

Figure 5.2: Optimized structures of mono-doped clusters, (Left to Right) M1, M2, M3

and M4. Dopant Cr atoms are represented by black spheres and colour codes of Zn and

Te atoms are same as in Fig. 5.1.

First we study the structural, electronic and magnetic properties of ground state

(ZnTe)12 cluster doped with single Cr atom. We study four different kinds of mono-

doping cases:

(i) a Zn atom substituted by a Cr atom,

(ii) a Te atom substituted by a Cr atom,

(iii) a Cr atom placed inside cage and

(iv) a Cr atom placed outside cage over a hexagonal unit.

These are indicated, respectively, as M1, M2, M3 and M4 in Fig. 5.2. For all doping

cases we consider only the ground state structure.

The structures M1 and M2 are similar to pristine (ZnTe)12 clusters with some local

changes in bond lengths. The Cr-Te distance in M1 is 2.77 Å which is larger than Zn-Te

distance in pristine (ZnTe)12 cluster. In the case of M3, the Cr atom initially placed at
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Table 5.1: Binding energy per atom, Eb in eV, formation energy, Eform in eV, HOMO-

LUMO gap (smallest of the two spin channels), Egap in eV and magnetic moments in

Bohr-magneton (µB) of the mono-doped clusters.

Magnetic moment

Cluster Eb Eform Egap Cr Total

M1 2.089 -0.521 0.58 3.75 3.62

M2 1.914 3.691 1.00 4.07 3.80

M3 2.026 -1.031 1.36 4.29 4.66

M4 2.007 -0.560 0.64 4.04 4.62

the middle of the cage moves just below a hexagonal surface after geometry optimization.

Similarly, in the case of M4, the Cr atom placed outside the cage moves a little above the

hexagonal surface. Apart from formation of new Cr-Zn and Cr-Te bonds due to inclusion

of a Cr atom, the other bond lengths in M3 and M4 remain more or less similar to those

in the parent pristine (ZnTe)12 cluster.

The binding energy per atom, defect formation energy2, HOMO-LUMO gaps, magnetic

moment of Cr atom and total magnetic moment of all these mono-doped clusters are shown

in Table 5.1. The cluster M1 has the largest binding energy per atom. M2 is higher in

energy than M1 showing that Cr doping at Zn site is more favourable than Cr doping

at Te site. This behaviour is further supported by defect formation energy. The lower

defect formation energy for Cr doping at Zn site than that at Te site implies that it is

easier to dope Cr atom at Zn site. Comparing the energetics of M3 and M4 it is clear

that endohedral doping is more feasible than the exohedral doping.

All Cr doped clusters have significant magnetic moments, mainly contributed by the

3−d orbitals of Cr atom. This result is totally different from Cr doped Si16 cluster where

the moment of Cr atom is completely quenched [69]. The magnitude of the total magnetic

moments are ordered in the four clusters as M1 < M2 < M4 < M3. Te atoms in cluster M1

2The procedure for the calculation of formation energy has been outlined in Chapter 4
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carry small induced magnetic moments (∼ 0.06 µB) which are antiparallel to the moment

on Cr atom. The smaller the Cr-Te distance, the more is the hybridization of the 3d states

of TM with the states of Te resulting in smaller total magnetic moment. The magnetic

moment ordering M1 < M2 agrees this behaviour as Cr atom in M1 is coordinated with

3 Te atoms while in M2, the Te atoms lie farther away. However in the case of M3 and

M4, Zn as well as Te atoms have small induced moments parallel to the moment of Cr

and thus resulting in enhancement of total magnetic moment in these clusters. The large

local magnetic moment on Cr atom in M3 is due to extra contribution from Cr-s (0.15

µB) and Cr-p (0.09 µB) states. The local magnetic moment of Cr atom in all cases is

found to be larger than the values obtained from similar calculations for Cr doped bulk

[71] and thin film [72] of ZnTe. This is mainly because of reduced coordination found in

the clusters.

5.3.3 Bi-doped clusters

In this section we study the nature of magnetic coupling between two Cr atoms in (ZnTe)12

cluster. As the binding energy and formation energy results in previous section favour Cr

substitution at Zn sites than that at Te sites all the subsequent calculations have been

carried out for Cr doping at Zn sites only. We have chosen three different combinations

of Zn sites for Cr substitution :

(i) opposite vertices of a rhombus,

(ii) adjacent Zn sites in a hexagon and

(iii) Zn-sites of two unconnected hexagons such that Zn-Zn distance is the farthest apart

as shown in Fig. 5.3.

These are labeled in the order of increasing Cr-Cr distance as BF1, BF2 and BF3, re-

spectively, for ferro-magnetically coupled Cr atoms. The corresponding clusters with
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Figure 5.3: Optimized structures of bi-doped (ZnTe)12 clusters: (Top) BF1, BF2 and BF3

(Bottom) BAF1, BAF2 and BAF3. Colour codes of atoms are the same as in Fig. 5.2.

The parallel and antiparallel arrows indicate FM and AFM couplings respectively.

antiferromagnetically coupled Cr atoms are labeled as BAF1, BAF2 and BAF3 respec-

tively.

The results for bi-doped clusters are listed in Table 5.2. Except for the local deforma-

tion, the geometrical structures of BF1, BF2 and BF3 are similar to that of the pristine

(ZnTe)12 cluster. However, the structures of clusters with antiferromagnetically coupled

Cr atoms, particularly BAF1 and BAF2, are significantly distorted. This is evident from

the huge reduction in the distance between two Cr atoms, dCr−Cr in BAF1 and BAF2.

The cluster BF1 is found to be the ground state configuration. The energy ∆E in

the Table 5.2 is the energy of clusters with respect to the energy of this ground state

configuration. Comparing the energetics of ferromagnetic arrangement BF1 with the
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Table 5.2: Distance between Cr atoms, dCr−Cr in Å, energy difference with respect to

BF1, ∆E in eV, binding energy, Eb in eV/atom, and magnetic moments in units of

Bohr-magneton (µB).

Magnetic moment

Cluster dCr−Cr ∆E Cr atom Total

BF1 2.96 0.0 3.76 7.25

BF2 3.40 0.144 3.74 7.23

BF3 6.83 0.240 3.75 7.29

BAF1 2.82 0.072 3.53 0.00

BAF2 2.91 0.024 3.56 0.02

BAF3 6.82 0.242 3.75 0.00

corresponding antiferromagnetic ones it is clear that ferromagnetic arrangement BF1 is

favourable over the AFM arrangement BAF1 by about 36 meV energy per Cr atom. The

clusters BF3 and BAF3 are degenerate in energy which suggests that there is no long

range coupling between two Cr atoms. This is further supported by the fact that there

is no appreciable difference in Cr-Cr distance and also the magnitude of local magnetic

moment of Cr atom in both BF3 and BAF3 is the same. The only case favoring anti-

ferromagnetic arrangement is BAF2. The significant decrease in Cr-Cr distance (14.4 %)

in BAF2 suggests strong Cr-Cr magnetic coupling in the AFM state. This indicates the

tendency of Cr2 anti-ferromagnetic dimer formation. In fact Cr2 free dimer is found to be

antiferro-magnetically coupled [73]. In order to investigate the effect of Cr-Cr distance

we performed static calculation for BAF2 keeping Cr-Cr distance equal to the case of

BF2 (3.40 Å). In this case BAF2 comes to be less favorable than BF2 by about 0.08 eV.

However, the Cr-Cr distance itself cannot be fully responsible for this, for if it were so

then BAF1 would also be favorable over BF1. The more important factor seems to be

the local environment. In the case of BF1 there lies two Te atoms in between two Cr

atoms whereas in the case of BF2 (or BAF2) there is only one Te atom in between two

Cr atoms.
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Comparing the magnetic moments in bidoped clusters with that in M1, we find that

the ferromagnetic configurations more or less retain the magnetic moment of Cr atom

in M1. The magnetic moment of Cr atom is significantly reduced in BAF1 and BAF2.

This is because of larger proximity of Cr atoms in BAF1 and BAF2 causing Cr d − d

hybridization.
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Figure 5.4: (Left) Total DOS of undoped (ZnTe)12 cluster and (Right) atom projected

partial DOS of Cr-d and Te-p states of the mono-doped (ZnTe)12 cluster, M1. The dashed

vertical line is the Fermi level (shifted to 0 eV). Majority (up) spin states are plotted along

positive y axis and minority (down) spin states along negative y axis.

Finally, we study the density of states (DOS) of undoped and doped clusters to analyze

the effect of Cr doping over evolution of magnetism. The total DOS of pristine (ZnTe)12

cluster is shown in the left panel of Fig. 5.4. There is no spin polarization which shows

the non-magnetic nature of the (ZnTe)12 cluster like the bulk ZnTe. The right panel of

Fig. 5.4 shows the atom projected partial DOS of mono-doped cluster M1. The dotted

line is for Cr-d states and the solid line is for Te-p states. The magnetic moment in M1

mainly comes from the polarized Cr-d states. As the Cr atom is sitting at Zn site in 2+

state, one would expect the moment of 4 µB on it. But, the hybridization between Cr-d
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Figure 5.5: Partial DOS of Cr 3d and Te 5p states in the cluster BF1. Total DOS is also

plotted which is scaled down for the sake of clarity. The dashed vertical line is the Fermi

level (shifted to 0 eV). Majority (up) spin states are plotted along positive y axis and

minority (down) spin states along negative y axis.

and Te-p causes the reduction in the moment. The Cr induced states falls in the gap

causing the narrowing of HOMO-LUMO energy gap.

Next we study the DOS of bi-doped cluster BF1 to explore the origin of ferromagnetic

coupling in it. To serve this purpose we plot partial DOS of Cr 3d and Te 5p states in

Fig. 5.5. Substantial amount of Cr-d states can be seen above Fermi level. These d states

tend to align parallel to the d states of another Cr atom and thus effectively leading to

ferromagnetic coupling between the two Cr atoms. This is ferromagnetic superexchange

mechanism. The possibility of ferromagnetic superexchange is also supported by close

to 90◦ Cr-Te-Cr angle in BF1. However, there is also strong p − d hybridization leading

to shift of p − d hybridized states to higher energy side in up spin channel and to lower

energy side in down spin channel. Thus Zener’s p−d exchange mechanism [70] also seems

contributing to stabilization of the ferromagnetic state. There is absence of down spin

states at the Fermi level, thus the ferromagnetism is of half metallic nature. This agrees

with earlier reports of occurrence of half metallic ferromagnetism in Cr doped bulk [71]
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and thin film [72] of ZnTe.

5.4 Summary

We found highly symmetric cage-like structure for (ZnTe)12 clusters. The substitutional

doping of Cr atom at Zn site is found to be the most favorable. Monodoped clusters show

atomic like magnetic moment. In the case of bidoped clusters, both ferromagnetic and

anti-ferromagnetic exchange coupling are found to exist depending on the local environ-

ment around Cr atoms. The ferromagnetic state is more stable when two Cr atoms lie on

opposite vertices of a rhombus. The ferromagnetism is of half metallic nature. Antiferro-

magnetic state is favourable when two Cr atoms lie at the adjacent Zn sites of a hexagon.

When Cr atoms are farthest apart both ferromagnetic and antiferromagnetic states are

found to be degenerate indicating that the magnetic exchange coupling in between Cr

atoms is short ranged.



Chapter 6

Ferromagnetism in Mn doped and C co-doped ZnO

In this chapter we shall discuss the magnetism in Mn doped bulk ZnO1. Mn doped ZnO is

found to be an antiferromagnetic system. We co-dope ZnMnO with carbon which provides

holes into the system. We show that carbon concentration as low as about 2.8 at. % can

lead to stabilization of ferromagnetic state in ZnMnO.

6.1 Introduction

After the theoretical prediction by Dietl et al. [74] suggesting the occurrence of room

temperature ferromagnetism (RTF) in Mn doped ZnO and GaN, these systems have been

studied extensively. While the initial DMS perspective research was focused to doped

GaN, recently ZnO has attracted much attention as it is easier to synthesize its single

crystals [75]. The solubility limit of Mn into ZnO is fairly large [76], which is another

important advantage over GaN. However, the occurrence of ferromagnetism as well as its

physical origin in transition metal doped ZnO is controversial. The RTF in bulk as well

as thin film of Zn1−xMnxO has been reported by Sharma et al. [45]. Pradhan et al. have

also reported RTF in pulsed-laser deposited epitaxial thin film of ZnMnO [77]. Contrary

to these reports, there are several studies showing the absence of ferromagnetism in TM

1This Chapter is based on the Paper: Stabilization of ferromagnetism in Mn doped ZnO with C

co-doping, J. Magn. Magn. Mater. 321, 273 (2009); Manoj K Yadav, Biplab Sanyal and Abhijit

Mookerjee.
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doped ZnO [78, 79, 80]. Ueda et al. [78] prepared 3−d transition metal doped ZnO

thin film using pulsed laser deposition method. They reported absence of ferromagnetism

in Cr, Mn and Ni doped films. Similarly the works by Jin et al. [79] and Lee et al.

[80] do not show the occurrence of ferromagnetism in Cr doped ZnO thin film, and the

need for co-doping (to introduce carriers) has been suggested for making the system

ferromagnetic [80, 81, 82]. Experimental study [83] as well as first principle calculation

[84] shows the stabilization of ferromagnetism in ZnCoO when co-doped with Al. The ab

initio calculation by Sato et al. [85] also shows the stabilization of ferromagnetic state in

ZnMnO by introducing holes.

We explore the possibility of ferromagnetism in Mn doped ZnO. Doping ZnO by Mn

at Zn site is isovalent doping, i.e Mn does not provide any carrier into the system. In

the absence of any carrier the coupling between two Mn atoms is dominated by anti-

ferromagnetic superexchange mechanism. As depicted by some earlier studies [84, 85] that

introduction of external carriers by co-doping leads to the stabilization of ferromagnetic

state in otherwise anti-ferromagnetic systems, we show on the basis of ab initio calculation

that ferromagnetic state can be stabilized in ZnMnO when co-doped with C atom at O

site.

6.2 Computational Details

The calculations were carried out using a plane wave based DFT code, namely the Vienna

ab initio simulation package (VASP). The electron-ion interactions have been described by

PAW method [18, 19] which is specially suitable for proper treatment of semi-core electrons

of transition metals. The exchange correlation energy is calculated using PBE functional

[86]. The pseudo potentials for Mn and Zn were generated by including their 3−d states

in the valence configuration. The calculations were performed using a 3×3×2 super-cell

consisting of 36 formula units of ZnO. The choice of such a large super-cell helps to keep
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the dopant concentration close to practical limit and also avoids the spurious magnetic

interaction between a magnetic dopant and its image. A Γ centered 3×3×2 Monkhorst-

Pack mesh was used for the integration of charge densities over the Brillouin zone. The

plane wave cut off energy was set to 400 eV. All the atoms in the super-cell were relaxed

till the Hellman-Feynman force on each ion was less than 0.01 eV/Å.

6.3 Results and Discussion

Two nearest neighbour coplanar Zn atoms were replaced by Mn atoms as shown in Fig.6.1.

This corresponds to 5.55 at.% of doping. Total energy calculations for ferromagnetic (FM)

and anti-ferromagnetic (AFM) couplings show that AFM state is energetically favourable

over FM state by about 34 meV/Mn atom. Thus in the absence of any external carrier

the coupling between Mn atoms in ZnO matrix is AFM. This result is in agreement

with the Korringa-Kohn-Rostoker (KKR) method based LDA calculation by Sato and

Katayama-Yoshida [85], Iusan et al. [87] and Rosa and Ahuja [88].

In order to introduce some carriers into the system we co-dope ZnMnO with carbon

atom at O site. Carbon has two electrons less than that of oxygen and hence it introduces

two holes into the system. The formation energy for such doping was found to be 3.21 eV

which shows that there is a reasonable possibility of such a doping. In order to have an

idea about site preference of C atom and hence its effect on magnetic coupling between

the Mn atoms, we dope a C atom at three different O sites, marked as 1, 2 and 3 in Fig.

6.1, hence forth known as configurations 1, 2 and 3 respectively. The choice of such sites

ensures that the C atom remains equidistant from both Mn atoms in each case.

For each configuration total energy calculations were carried out for both the FM and

AFM couplings between the two Mn atoms. The results are listed in Table 6.1. The

configuration 1 in the FM state is found to be the minimum energy configuration. The

energy ∆E in Table 6.1 is the energy relative to the energy of the configuration 1 in FM
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Figure 6.1: A portion of the 72-atom super-cell showing Mn and C doping sites. Three

different C doping sites are marked as 1, 2 and 3.

state. The FM state in configuration 1 is stable over its AFM state by about 0.34 eV/Mn.

Thus there is huge difference in energy showing the stabilization of ferromagnetic state.

It should be noted that in the absence of co-doping by C atom, AFM state was stable

over FM state by only about 0.068 eV. Such a remarkable reversal in magnetic coupling

is brought about by co-doping with a single C atom which is equivalent to only about

2.8 at. % doping. The highly stable FM state indicates the possibility of large transition

temperature. Moreover, the transition temperature can be controlled by adjusting the

concentration of carbon doping.

The magnetic moments on the Mn atoms for both FM and AFM couplings in config-

uration 1 are 3.46 µB and 3.33 µB respectively. Thus the presence of C atom leads to

the reduction in magnetic moments in both cases. This is because Mn-C distance (1.86

Å) is much smaller than Mn-O distance (2.01 Å) which causes strong p− d hybridization

resulting in reduction of the magnetic moment. This will be evident while analyzing atom

projected density of states (Fig. 6.3) later. The distance, dMn−Mn between the two Mn

atoms heavily reduces in the case of FM coupling but remains more or less the same in

the case of AFM coupling.
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Table 6.1: Relative energy ∆E in eV, Magnetic moment of Mn in µB, distance between

Mn atoms, dMn−Mn in Å, and distance between Mn and C atoms, dMn−C in Å for

configurations 1, 2 and 3.

Config- Magnetic ∆E Magnetic dMn−Mn dMn−C

uration state moment of Mn

1 FM 0.00 3.48 3.17 1.86

AFM 0.68 3.33 3.24 1.89

2 FM 2.34 4.05 3.29 3.83

AFM 2.33 4.04 3.28 3.82

3 FM 2.19 4.01 3.29 5.09

AFM 2.23 3.98 3.25 5.07

The FM and AFM state in configurations 2 and 3 are almost degenerate. C atom

in these configurations lie much farther from the Mn atoms. However, it can interact

with Mn atoms indirectly through the neighbouring Zn and O atoms. This is evident

from the fact that neighbouring Zn and O atoms which otherwise are nonmagnetic now

carry significant magnetic moments (0.01-0.09µB). However, this interaction is weak and

the FM state is not stabilized. The energetics of configurations 2 and 3 show that these

are energetically highly unfavorable configurations compared to the configuration 1. This

implies that during synthesis of ZnMnO:C, carbon atom will tend to reside closer to

Mn atoms. Incidentally, FM state is highly stable when C atom is close to Mn atoms

(configuration 1).

Let us first analyze the density of states in the absence of C co-doping. The spin

polarized partial density of states of Mn d and O p (of O atom at site 1) for AFM state

is shown in Fig. 6.2. Mn atoms sit at Zn sites in 2+ state and hence they assume d5

high spin configuration. Thus up spin d states are fully occupied and down spin d states

are fully empty (slightly unoccupied d states appearing just above the Fermi level is due

to smearing width (0.1 eV) used in the calculation). There is absence of carriers in the
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Figure 6.2: Density of states of Mn-d and O-p for the AFM state of Mn doped ZnO. The

dashed vertical line indicates the position of the Fermi levels (shifted to 0 eV). Majority

(up) spin states are plotted along positive y axis and minority (down) spin states along

negative y axis.

system. In this case the coupling between two Mn atoms is mediated by spin polarized

moments on intermediate O atom. The spin up O 2−p states couple with spin up d states

of one Mn atom, while spin down O 2−p states couple with spin down d states of another

atom. This is typical of antiferromagnetic superexchange [89, 90] coupling which leads to

lowering the energy in the AFM state by pulling the d states toward lower energy side.

Now we analyze the DOS of carbon co-doped ZnMnO. The spin polarized DOS of

Mn d states and C p states for configuration 1 in FM state is shown in Fig. 6.3. There

is presence of strong p-d hybridized hole states at the Fermi level. This causes partial

occupancy in Mn d states. A 3-d electron from a partially occupied d states of one Mn

atom can hop to a partially occupied 3-d orbital of the neighbouring Mn atom, provided

the neighbouring Mn atom has parallel spin. Thus, the kinetic energy is lowered if the

two Mn atoms are ferro-magnetically coupled. This is the double exchange mechanism

[91] which wins here over the AFM superexchange mechanism. We also notice highly

delocalized d states hybridizing with the valence band p states resulting in polarization of
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Figure 6.3: DOS of Mn-d and C-p for the FM state of carbon co-doped ZnMnO. The

dashed vertical line indicates the position of the Fermi level (shifted to 0 eV).

p states. This leads to pushing the up spin p states to higher energy side and down spin p

states to lower energy side which effectively results in lowering in energy. Thus, the p− d

exchange mechanism [70] is also contributing in stabilizing the ferromagnetic state. This

situation of simultaneous presence of both double and p− d exchange mechanisms is also

seen in Mn doped phosphides and arsenides of aluminium and indium [92].

6.4 Summary

We have presented first principles study of magnetism in ZnMnO. The coupling between

Mn atoms in ZnMnO is found to be antiferromagnetic which is expected results in the

absence of external carriers. We introduced carriers (holes) into the system by co-doping

with C atoms. We found that the concentration of C atom as low as about 2.8 at. %

leads to the stabilization of ferromagnetism. The ferromagnetic state is stabilized due

to both double and p− d exchange mechanisms. Since the FM state is stabilized due to

introduction of holes into the system, the concentration of hole provides a tool to control

the transition temperature.



Chapter 7

Tuning ferromagnetism in manganese oxide

In this chapter we show how an anti-ferromagnetic semiconductor MnO can be converted

to a ferromagnetic one1. This work is motivated from the result of the previous chapter

where we showed the stabilization of ferromagnetism in ZnMnO by introducing holes into

it. Here we apply the same idea to the anti-ferromagnetic semiconductor MnO. We show

that doping MnO by 2-p elements like C and N, introduces holes into the system leading

to ferromagnetic ordering in MnO.

7.1 Introduction

The magnetic oxides, MO (M = Mn, Fe, Co, Ni) in the rock salt structures are well

known anti-ferromagnetic materials owing to M-O-M anti-ferromagnetic super-exchange

mechanism. Among these, MnO is the highest local magnetic moment ( 5µB ) bearing

material with transition temperature of 118 K [93], and can be considered as a model

system for theoretical understanding of electronic and magnetic properties in rock salt

MO [94, 95]. MnO being a semiconductor with large band gap (3.6-3.8) [96] can be a

good candidate for spintronic applications if spontaneous magnetization is achieved in it.

Unlike the conventional approach of achieving ferromagnetism in a semiconductor by

1This chapter is based on the paper: Tuning magnetism of MnO by doping with 2p elements, J. Magn.

Magn. Mater. (accepted); Manoj K Yadav, Abhijit Mookerjee and Biplab Sanyal.
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doping it with few concentration of a 3-d element [97, 98], some studies [99, 100, 101]

suggest that doping by a 2-p element can also bring about ferromagnetism. Bannikov et

al. [99] have reported the occurrence of half metallic ferromagnetism in MgO by doping

with 2-p elements like B, C, N. Half metallic ferromagnetism is also found in carbon

doped SrO and BaO [102]. Wu et al. [100] have achieved spontaneous magnetization in

BN nanotubes by carbon substitution for either a boron or a nitrogen atom. A recent

study by Gorbunova et al. [101] shows that the non-magnetic BeO nanotube can be

converted to magnetic one by doping with B, C, N at O site. All the aforesaid studies

pertain to achieving ferromagnetism in nonmagnetic systems. In this chapter we explore

the role of 2-p elements in the anti-ferromagnetic semiconductor, MnO. We show with

the help of ab initio calculations that ferromagnetism can indeed be achieved in MnO by

doping it with carbon and nitrogen at oxygen sites.

7.2 Computational Details

First principles density functional calculations have been performed using the PAW based

method implemented in VASP code [18, 19, 105]. The generalized gradient spin density

approximation to the exchange correlation functional has been employed within the PBE

scheme [12]. The strong on-site Coulomb repulsion of 3-d states of Mn has been accounted

under Dudarev scheme [103] using U-J=6 eV, where U and J are the Coulomb and ex-

change parameters in the Hubbard model. To facilitate small doping concentration a 64

atom super-cell has been used. The Brillouin zone sampling has been done with 4×4×4

Monkhorst-Pack k-point grid. The plane wave energy cut off of 500 eV resulted in a good

convergence. Full geometry optimizations were done using conjugate gradient algorithm

with Hellman-Feynman force convergence threshold of 0.01 eV/Å.

For MnO in type II anti-ferromagnetic state [Fig. 7.1], the above computational set-up

resulted in lattice parameter of 4.50 Å , rhomohedral distortion angle of 0.56◦, the local
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spin magnetic moment for Mn atom of 4.69µB and the band gap of 2.02 eV. All these

values agree well with the similar PBE+U calculation by Franchini et al. [104]. The type

II antiferromagnetic ordering in MnO is lower in energy (by about 7 meV/Mn atom) than

type I ordering (alternate 100 planes with opposite spin polarizations), and therefore we

considered only type II ordering for subsequent calculations.

Figure 7.1: Type II AFM ordering in MnO. Red spheres represent spin up Mn atoms and

blue spheres spin down Mn atoms. Small white spheres represent O atoms.

7.3 Results and Discussion

First we investigate the favorable substitutional site for X (C and N) by calculating

formation energies when X is substituted at Mn and O sites. The expressions for formation

energies at Mn and O sites are respectively given by

Ef [Mn] = E[Mn31XO32] − E[Mn32O32] − µX + µMn, (7.1)

and

Ef [O] = E[Mn32XO31] − E[Mn32O32] − µX + µO, (7.2)

where E[Mn32O32] is the energy of the undoped super-cell and E[Mn31XO32] and E[Mn32XO31]

are the energies of super-cell with X doped at Mn and O sites respectively. µX , µMn and
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µO are the chemical potentials of X, Mn and O respectively. The chemical potentials

for Mn and C were calculated with reference to their bulk stable phases (alpha-Mn and

graphite) whereas the chemical potentials of N and O were calculated with reference to

their stable molecular configurations. The calculated values for chemical potentials of Mn,

O, N and C are 5.926, 4.929, 8.312 and 9.212 eV respectively. The formation energy for

C and N substitution at Mn site are 9.499 and 10.062 eV respectively. The corresponding

values for substitution at O site are 6.605 and 4.130 eV respectively. As expected, the

doping at O site is relatively more favourable than the doping at Mn site. Therefore we

consider doping at O site only in our subsequent calculations.
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Figure 7.2: Energy difference between ferromagnetic and anti-ferromagnetic Mn-Mn cou-

plings as a function of doping concentration.

Figure 7.2 shows the energy difference between ferromagnetic (FM) and anti-ferromagnetic

(AFM) coupling between Mn atoms as a function of concentration of C and N. This energy

difference is the measure of magnetic exchange interaction. It is evident from the figure

that pure MnO in type II AFM state is favourable over FM state by above 42 meV/Mn

atom. With the substitution of only one C atom at O site (equivalent to 3.125 at. % dop-

ing) ferromagnetic state becomes favourable over AFM state by about 5 meV/Mn atom.
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With further increase in C concentration the stability of FM state further increases. In

the case of doping by a single N atom, AFM state is still energetically favorable, however

by small energy now (19 meV/Mn atom). This shows the tendency toward stabilization

of FM state. FM state indeed stabilizes on increasing N concentration. At the concen-

tration of 12.5 at. % (equivalent to substitution of 4 O atoms in the unit cell) FM state

becomes favourable by 142 and 51 meV/Mn for C and N respectively. Thus, FM state is

well stabilized in all the cases at doping concentration of 12.5 at.%.

Table 7.1: Magnetic moments (in µB) on Mn, X (X= C and N) and O for FM and AFM

configurations at 12.5 at. % doping.

Dopant FM AFM

Mn X O Mn X O

C 4.61, 4.72 -0.50 0.062, 0.078 4.61, 4.68 0.0 0.0

N 4.66, 4.72 -0.20 0.043, 0.100 4.63, 4.68 0.0 0.0

The atom projected magnetic moments for C and N dopings in FM and AFM config-

urations are listed in Table II. We find that the magnetic moment of 6 Mn atoms which

are coordinated to the dopant decreases in both FM and AFM configurations. In AFM

state the magnetic moment of the 6 coordinated Mn atoms decreases to 4.59 and 4.65 µB

for C and N doping respectively. The corresponding values for FM state are 4.62 and 4.67

µB . However, the magnetic moment of other Mn atoms which are not coordinated with

the dopant remains same (4.69 µB ) in AFM conguration, but enhances to 4.72 µB in

FM conguration. For the ferro-magnetically coupled Mn atoms, we observe a rather large

anti-parallel moment on X atoms (-0.50, -0.20 µB for C and N respectively). However,

in the AFM conguration, frustrating behaviour is observed at X and O sites. Due to the

anti-parallel Mn moments the induced moments on X and O atoms disappear resulting

in a zero magnetic moment in the unit cell.

In order to investigate the reason for stabilization of ferromagnetic state we have



Chapter 7. Tuning ferromagnetism in manganese oxide 71

-10 -8 -6 -4 -2 0 2 4 6 8 10
Energy relative to Fermi level (eV)

-10

-8

-6

-4

-2

0

2

4

6

8

10

D
O

S
/e

V

Total
O-p
Mn-d

Figure 7.3: Density of states of pure MnO in type II AFM state. The dashed vertical line

indicates the Fermi level (shifted to 0 eV). The total DOSs have been scaled down for the

sake of clarity. Majority (up) spin states are plotted along positive y axis and minority

(down) spin states along negative y axis.

analyzed the density of states (DOS) for both undoped and doped cases. Figure 7.3

shows the DOS in the AFM configuration for undoped MnO. The insulating character of

MnO is well reproduced and the nature of DOS matches well with previous theoretical

studies [106]. Here, the AFM super-exchange mediates the exchange coupling between

the Mn atoms. The up spin O-p states strongly hybridize with up spin d states of one Mn

atom while the down spin O-p states strongly hybridize with the down spin d states of

neighboring Mn atoms and thereby lowering the energy more in the case of AFM state.

This is the usual anti-ferromagnetic super-exchange mechanism [89, 90].

In Fig. 7.4, DOSs are shown for 12.5 at.% N and C doping in the FM state. The

spin-polarized impurity states appear in the gap of MnO. Here one expects a competition

between ferromagnetic double-exchange and anti-ferromagnetic super-exchange interac-

tions between the Mn atoms. Both N and C-p states are exchange split thus providing

some p states in the Fermi region which hybridize with Mn-d states. In the case of N dop-

ing [Fig. 7.4(left)], some of the up spin p states get unoccupied because an N atom sitting
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Figure 7.4: Density of states of 12.5 at. % doped MnO in FM state. (Left) N doped and

(Right) C doped. The total DOSs have been scaled down for the sake of clarity. The

dashed vertical lines indicate the Fermi levels (shifted to 0 eV). Majority (up) spin states

are plotted along positive y axis and minority (down) spin states along negative y axis.

at O site provides one hole. In the case of C doping [Fig. 7.4(right)] some more up spin p

states get unoccupied as a C atom sitting at O site provides 2 holes. When the concentra-

tion of N is low, the coupling between Mn atoms is still dominated by antiferromagnetic

superexchange mechanism. As the concentration of N increases the concentration of hole

increases and ferromagnetic coupling gets stabilized. For a particular doping concentra-

tion, C doping provides more holes than N doping and hence ferromagnetic state is more

stabilized in the latter case. It should be noted that there is energy gap in down spin

channel in both C and N doping cases. Thus, the FM state is of half metallic nature

showing the possibility that C and N doped MnO can provide spin polarized current.

7.4 Summary

To summarize, we have shown that C and N doping at O sites of anti-ferromagnetic

MnO can cause a ferromagnetic coupling between the Mn atoms. The carbon doping is
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found to be more effective than N doping in stabilizing the ferromagnetism. The carbon

concentration as low as 3.125 at. % could stabilize ferromagnetic state. Doping by C

or N atom provides holes into the system which lead to stabilization of ferromagnetism.

Ferromagnetic state in both C and N doped MnO is found to be of half metallic nature

indicating its potential to produce spin polarized current. Since the stability of ferromag-

netic state depends on the type of dopant atom and also on the doping concentration

these parameters can be utilized as tools to control the transition temperature.
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Conclusion

We had set out to study the effect of doping in wide band gap semiconductors. The idea

was to study structural, electronic and magnetic properties of these materials using the

first principles method based on density functional theory. The motivation on one hand

was to understand the experimental behavior from quantum chemical view point and on

the other hand to explore new materials with desired properties. The systems for which

experimental results are not available such microscopic understanding would be helpful in

predicting the behaviour of the systems and would provide valuable information for the

prospective experiment for the design of material with desired properties.

Our findings on pristine (ZnO)n clusters reveal that the stability of clusters for n≤ 7

is mainly derived from linearity of O-Zn-O angle while for the larger clusters it is driven

mainly from the increased coordination. For the first time we reported the tailoring of

energy gap in ZnO clusters of sizes less than 1 nm. With the results on Mg/Cd doped

ZnO clusters we explained the experimentally observed variation of band gap on the basis

of nature of bonding and ionicity.

The study on Cr doped ZnTe clusters suggests the occurrence of ferromagnetic coupling

between Cr atoms in the most stable structure. The increased hybridization between Cr-

d and Te-p states lead to the stabilization of ferromagnetic state. When Cr atoms are

farthest apart ferromagnetic and antiferromagnetic couplings are found to be degenerate
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showing that the exchange coupling is short ranged.

In bulk ZnMnO and MnO we showed the stabilization of ferromagnetic state by doping

with 2p elements. The doping with 2p elements at oxygen sites of these systems provides

hole carriers into the system which lead to the stabilization of ferromagnetic state. These

results are open for experimental verification.

There are, of course, still many loopholes which we should appreciate and attempt

to eliminate in future work in this area. The very first problem arises with the density

functional theory. Being based on a variational principle, it can only give the ground state

properties. For example, the band gap requires the knowledge of the lowest excited state.

Therefore, the DFT grossly underestimates the band gap. Accurate band gap estimations

have been recently carried out by our group [107] but this has not been incorporated in

this work. Incorporation of this within the VASP programme is a part of our continuing

work. To look at the excited state spectrum we could carry out time dependent density

functional approaches.

Even within the DFT framework, proper energy minimization and structure optimiza-

tion requires extensive simulated annealing. This has not been adequately carried out to

ascertain the geometries of the clusters. We have not tried to go beyond the DFT and

carry out configuration interaction ( CI ) type chemical approaches for accurate energy

determinations. CI for the larger clusters may not be very easy to carry out, but an

attempt should be made.
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